A new asymmetric inclusion region for minimum weight triangulation

Article
  • 54 Downloads

Abstract

As a global optimization problem, planar minimum weight triangulation problem has attracted extensive research attention. In this paper, a new asymmetric graph called one-sided β-skeleton is introduced. We show that the one-sided circle-disconnected \({(\sqrt{2}\beta)}\) -skeleton is a subgraph of a minimum weight triangulation. An algorithm for identifying subgraph of minimum weight triangulation using the one-sided \({(\sqrt{2}\beta)}\) -skeleton is proposed and it runs in \({O(n^{4/3+\epsilon}+\min\{\kappa \log n, n^2\log n\})}\) time, where κ is the number of intersected segmented between the complete graph and the greedy triangulation of the point set.

Keywords

Minimum weight triangulation Inclusion region One-sided β-skeleton 

References

  1. 1.
    Agarwal P.K., Sharir M.: Applications of a new space-partitioning technique. Discret. Comput. Geom. 9, 11–38 (1993)CrossRefGoogle Scholar
  2. 2.
    Aichholzer O., Aurenhammer F., Hainz R.: New results on mwt subgraphs. Inf. Process. Lett. 69(5), 215–219 (1999)CrossRefGoogle Scholar
  3. 3.
    Belleville, P., Keil, M., Mcallister, M., Snoeyink, J.: On computing edges that are in all minimum weight triangulations. In: Proceedings of 12th Annual ACM Symposium on Computational Geometry, pp. V7–V8 (1996)Google Scholar
  4. 4.
    Bose P., Devroye L., Evans W.: Diamonds are not a minimum weight triangulation’s best friend. Int. J. Comput. Geom. 12(6), 445–453 (2002)CrossRefGoogle Scholar
  5. 5.
    Chazelle B.: Cutting hyperplanes for divide-and-conquer. Discret. Comput. Geom. 9, 145–158 (1993)CrossRefGoogle Scholar
  6. 6.
    Cheng, S.-W., Golin, M.J., Tang, J.C.F.: Expected-case analysis of β-skeleton with application to the construction of minimum-weight triangulations. In: Proceedings of Canadian Conference on Computational Geometry (CCCG), pp. 279–283 (1995)Google Scholar
  7. 7.
    Cheng S.W., Xu Y.F.: On β-skeleton as a subgraph of a minimum weight triangulation. Theor. Comput. Sci. 262(1–2), 459–471 (2001)CrossRefGoogle Scholar
  8. 8.
    Dickerson M.T., Keil J.M., Montague M.H.: A large subgraph of the minimum weight triangulation. Discret. Comput. Geom. 18, 289–304 (1997)CrossRefGoogle Scholar
  9. 9.
    Hoffmann M., Okamoto Y.: The minimum weight triangulation problem with few inner points. Comput. Geom. Theory Appl. 34, 149–158 (2006)Google Scholar
  10. 10.
    Keil M.: Computing a subgraph of the minimum weight triangulation. Comput. Geom. Theory Appl. 4, 13–26 (1994)Google Scholar
  11. 11.
    Kirkpatrick D.G., Radke J.D.: A framework for computational morphology. In: Toussaint, G.T. (eds) Computational Geometry, pp. 217–248. Elsevier, Amsterdam (1985)Google Scholar
  12. 12.
    Levcopoulos C., Krznaric D.: Quasi-greedy triangulations approximating the minimum weight triangulation. J. Algorithms 27(2), 303–338 (1998)CrossRefGoogle Scholar
  13. 13.
    Levcopoulos C., Krznaric D.: The greedy triangulation can be computed from the delaunay triangulation in linear time. Comput. Geom. Theory Appl. 14(4), 197–220 (1999)Google Scholar
  14. 14.
    Mulzer W., Rote G.: Minimum weight triangulation is np-hard. J. Assoc. Comput. Mach. (JACM) 55(2), 1–29 (2008)CrossRefGoogle Scholar
  15. 15.
    Remy, J., Steger, A.: A quasi-polynomial time approximation scheme for minimum weight triangulation. In: Proceedings of the 38th ACM Symposium on Theory of Computing (STOC), pp. 316–325 (2006)Google Scholar
  16. 16.
    Wang C.A., Chin F., Xu Y.F.: A new subgraph of minimum weight triangulations. J. Comb. Optim. 1(2), 115–127 (1997)CrossRefGoogle Scholar
  17. 17.
    Wang C.A., Yang B.: A lower bound for beta-skeleton belonging to minimum weight triangulations. Comput. Geom. Theory Appl. 19(1), 35–46 (2001)Google Scholar
  18. 18.
    Yang, B.T., Xu, Y.F., You, Z.Y.: A chain decomposition algorithm for the proof of a property on minimum weight triangulations. In: Proceedings of the 5th International Symposium on Algorithms and Computation (ISAAC), Lecture Notes in Computer Science, vol. 834, pp. 423–427. Springer-Verlag, Berlin (1994)Google Scholar

Copyright information

© Springer Science+Business Media, LLC. 2009

Authors and Affiliations

  1. 1.Department of Electrical and Computer EngineeringMichigan Technological UniversityHoughtonUSA

Personalised recommendations