Journal of Global Optimization

, Volume 45, Issue 1, pp 131–151 | Cite as

Global optimization of multi-parametric MILP problems

  • N. P. Faísca
  • V. D. Kosmidis
  • B. Rustem
  • E. N. Pistikopoulos
Article

Abstract

In this paper, we present a novel global optimisation approach for the general solution of multi-parametric mixed integer linear programs (mp-MILPs). We describe an optimisation procedure which iterates between a (master) mixed integer nonlinear program and a (slave) multi-parametric program. Moreover, we explain how to overcome the presence of bilinearities, responsible for the non-convexity of the multi-parametric program, in two classes of mp-MILPs, with (i) varying parameters in the objective function and (ii) simultaneous presence of varying parameters in the objective function and the right-hand side of the constraints. Examples are provided to illustrate the solution steps.

Keywords

Multi-parametric mixed-integer linear programming Global optimization 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Acevedo J., Pistikopoulos E.N.: A multiparametric programming approach for linear process engineering problems under uncertainty. Ind. Eng. Chem. Res. 36, 717–728 (1997)CrossRefGoogle Scholar
  2. 2.
    Acevedo J., Salgueiro M.: An efficient algorithm for convex multiparametric nonlinear programming problems. Ind. Eng. Chem. Res. 42(23), 5883–5890 (2003)CrossRefGoogle Scholar
  3. 3.
    Adjiman C.S., Androulakis I.P., Floudas C.A.: A global optimization method, αbb, for general twice-differentiable constrained nlps. ii. implementation and computational results. Comput. Chem. Eng. 22(9), 1159–1179 (1998)CrossRefGoogle Scholar
  4. 4.
    Adjiman C.S., Dallwig S., Floudas C.A., Neumaier A.: A global optimization method, αbb, for general twice-differentiable constrained nlps. i. theoretical advances. Comput. Chem. Eng. 22(9), 1137–1158 (1998)CrossRefGoogle Scholar
  5. 5.
    Armacost R.L.: Computational experience in sensitivity analysis for nonlinear programming. Math. Program. 6, 301–326 (1974)CrossRefGoogle Scholar
  6. 6.
    Armacost, R.L.: Sensitivity analysis in parametric nonlinear programming. PhD thesis, School of Engineering and Applied Science, George Washington University, Washington, USA (1976)Google Scholar
  7. 7.
    Arnold V.I.: Catastrophe Theory. Springer-Verlag, Berlin (1984)Google Scholar
  8. 8.
    Baotić M., Christophersen F.J., Morari M.: Constrained optimal control of hybrid systems with linear performance index. IEEE Trans. Autom. Control 51(12), 1903–1919 (2006)CrossRefGoogle Scholar
  9. 9.
    Bazaraa M.S., Shetty C.M.: Nonlinear Programming—Theory and Algorithms. Wiley, New York (1979)Google Scholar
  10. 10.
    Bemporad A., Filippi C.: Suboptimal explicit receding horizon control via approximate multiparametric quadratic programming. J. Optim. Theory Appl. 117(1), 9–38 (2003)CrossRefGoogle Scholar
  11. 11.
    Bemporad A., Morari M., Dua V., Pistikopoulos E.N.: The explicit linear quadratic regulator for constrained systems. Automatica 38, 3–20 (2002)CrossRefGoogle Scholar
  12. 12.
    Bemporad A., Borrelli F., Morari M.: Min–max control of constrained uncertain discrete-time linear systems. IEEE Trans. Autom. Control 48(9), 1600–1606 (2003)CrossRefGoogle Scholar
  13. 13.
    Biegler L.T., Grossman I.E., Westerberg A.W.: Systematic Methods of Chemical Process Design. Prentice Hall, New Jersey (1997)Google Scholar
  14. 14.
    Borrelli F., Bemporad A., Morari M.: Geometric algorithm for multiparametric linear programming. J. Optim. Theory Appl. 118(3), 515–540 (2003)CrossRefGoogle Scholar
  15. 15.
    Borrelli F., Baotić M., Bemporad A., Morari M.: Dynamic programming for constrained optimal control of discrete-time linear hybrid systems. Automatica 41, 1709–1721 (2005)CrossRefGoogle Scholar
  16. 16.
    Dua, V.: Parametric programming techniques for process engineering problems under uncertainty. PhD thesis. Department of Chemical Engineering and Chemical Technology, Imperial College of Science, Technology and Medicine London, London, UK (2000)Google Scholar
  17. 17.
    Dua V., Pistikopoulos E.N.: Algorithms for the solution of multiparametric mixed-integer nonlinear optimization problems. Ind. Eng. Chem. Res 38, 3976–3987 (1999)CrossRefGoogle Scholar
  18. 18.
    Dua V., Pistikopoulos E.N.: An algorithm for the solution of multiparametric mixed integer linear programming problems. Ann. Oper. Res. 99, 123–139 (2000)CrossRefGoogle Scholar
  19. 19.
    Dua P., Pistikopoulos E.N.: Modelling and control of drug delivery systems. Comput. Chem. Eng. 29(11–12), 2290–2296 (2005)CrossRefGoogle Scholar
  20. 20.
    Dua V., Bozinis N.A., Pistikopoulos E.N.: A multiparametric programming approach for mixed-integer quadratic engineering problems. Comput. Chem. Eng. 26, 715–733 (2002)CrossRefGoogle Scholar
  21. 21.
    Dua V., Papalexandri K.P., Pistikopoulos E.N.: Global optimization issues in multiparametric continuous and mixed-integer optimization problems. J. Glob. Optim. 30, 59–89 (2004)CrossRefGoogle Scholar
  22. 22.
    Dua P., Doyle F.J., Pistikopoulos E.N.: Model-based blood glucose control for type 1 diabetes via parametric programming. IEEE Trans. Biomed. Eng. 53(8), 1478–1491 (2006)CrossRefGoogle Scholar
  23. 23.
    Faísca, N.P., Saraiva, P.M., Rustem, B., Pistikopoulos, E.N.: A multi-parametric programming approach for multi-level hierarchical and decentralised optimisation problems. Comput. Manag. Sci. (published electronically) (2007)Google Scholar
  24. 24.
    Faísca N.P., Dua V., Saraiva P.M., Rustem B., Pistikopoulos E.N.: Parametric global optimisation for bilevel programming. J. Glob. Optim. 38(4), 609–623 (2007)CrossRefGoogle Scholar
  25. 25.
    Faísca N.P., Kouramas K.I., Saraiva P.M., Rustem B., Pistikopoulos E.N.: A multi-parametric programming approach for constrained dynamic programming problems. Optim. Lett. 2(2), 267–280 (2008)CrossRefGoogle Scholar
  26. 26.
    Fiacco A.V.: Sensitivity analysis for nonlinear programming using penalty methods. Math. Program. 10, 287–311 (1976)CrossRefGoogle Scholar
  27. 27.
    Fiacco A.V.: Introduction to Sensitivity and Stability Analysis in Nonlinear Programming. Academic Press, New York (1983)Google Scholar
  28. 28.
    Fiacco A.V., Kyparisis J.: Computable bounds on parametric solutions of convex problems. Math. Program. 40, 213–221 (1988)CrossRefGoogle Scholar
  29. 29.
    Filippi C.: An algorithm for approximate multiparametric linear programming. J. Optim. Theory Appl. 120(1), 73–95 (2004)CrossRefGoogle Scholar
  30. 30.
    Floudas C.A.: Deterministic Global Optimization. Kluwer, Dordrecht (2000)Google Scholar
  31. 31.
    Gal T.: Rim multiparametric linear programming. Manag. Sci. 21(5), 567–575 (1975)CrossRefGoogle Scholar
  32. 32.
    Gal T., Nedoma J.: Multiparametric linear programming. Math. Program. Stud. 18, 406–422 (1972)Google Scholar
  33. 33.
    Gass S.I., Saaty T.L.: Parametric objective function (part 2). J. Oper. Res. Soc. Am. 3(4), 395–401 (1954)Google Scholar
  34. 34.
    Kosmidis, V.S.: Multiparametric analysis of mixed integer linear programming problems. Master’s thesis, Imperial College London, University of London, London, UK (1999)Google Scholar
  35. 35.
    Kouramas, K.I., Faísca, N.P., Rustem, B., Pistikopoulos, E.N.: Design of robust multi-parametric controllers for constrained multi-stage optimization problems. Automatica (submitted)(2008)Google Scholar
  36. 36.
    Kyparisis J., Fiacco A.V.: Generalized convexity and concavity of the optimal value function in nonlinear programming. Math. Program. 39, 285–304 (1987)CrossRefGoogle Scholar
  37. 37.
    Li Z., Ierapetritou M.G.: A new methodology for the general mixed-integer linear programming (milp) problems. Ind. Eng. Chem. Res. 46, 5141–5151 (2007)CrossRefGoogle Scholar
  38. 38.
    Li Z., Ierapetritou M.G.: Process scheduling under uncertainty using multiparametric programming. AIChE J 53(12), 3183–3203 (2007)CrossRefGoogle Scholar
  39. 39.
    Lundberg B.N., Poore A.B.: Numerical continuation and singularity detection methods for parametric nonlinear programming. SIAM J. Optim. 3(1), 134–154 (1993)CrossRefGoogle Scholar
  40. 40.
    Mangasarian O.L., Fromovitz S.: The Fritz John necessary optimality conditions in the presence of equality and inequality constraints. J. Math. Anal. Appl. 17, 37–47 (1967)CrossRefGoogle Scholar
  41. 41.
    McCormick, G.P.: Optimality criteria in nonlinear programming. In: SIAM-AMS Proceedings 1975, vol. 9, p. 27 (1976)Google Scholar
  42. 42.
    Morari M., Barić M.: Rcent developments in the control of constrained hybrid systems. Comput. Chem. Eng. 30(10–12), 1619–1631 (2006)CrossRefGoogle Scholar
  43. 43.
    Pertsinidis, A.: On the parametric optimization of mathematical programs with binary variables and its application in the chemical engineering process synthesis. PhD thesis, Department of Chemical Engineering, Carnegie-Mellon University, Pittsburg, USA (1992)Google Scholar
  44. 44.
    Pertsinidis A., Grossman I.E., McRae G.J.: Parametric optimization of milp programs and a framework for the parametric optimization of minlps. Comput. Chem. Eng. 22, S205–S212 (1998)CrossRefGoogle Scholar
  45. 45.
    Pistikopoulos E.N., Dua V., Bozinis N.A., Bemporad A., Morari M.: On-line optimization via off-line parametric optimization tools. Comput. Chem. Eng. 24, 183–188 (2000)CrossRefGoogle Scholar
  46. 46.
    Pistikopoulos E.N., Georgiadis M.C., Dua V.: Multi-Parametric Programming: Theory, Algorithms, and Applications, vol. 1. Wiley-VCH, Weinheim (2007)Google Scholar
  47. 47.
    Pistikopoulos E.N., Georgiadis M.C., Dua V.: Multi-Parametric Model-Based Control: Theory and Applications, vol. 2. Wiley-VCH, Weinheim (2007)Google Scholar
  48. 48.
    Pistikopoulos, E.N., Faísca, N.P., Georgiadis, M.C.: Advanced optimization techniques in the supply chain management of manufacturing industries. In: PulPaper 2007. Finish Paper Engineers’ Association, Helsinki, Finland (2007)Google Scholar
  49. 49.
    Poore A.B., Tiahrt C.A.: Bifurcation problems in nonlinear parametric programming. Math. Program. 39, 189–205 (1987)CrossRefGoogle Scholar
  50. 50.
    Ryu J.H., Pistikopoulos E.N.: A novel approach to scheduling of zero-wait batch processes under processing time variations. Comput. Chem. Eng. 31(3), 101–106 (2007)CrossRefGoogle Scholar
  51. 51.
    Ryu J.H., Dua V., Pistikopoulos E.N.: A bilevel programming framework for enterprise-wide process networks under uncertainty. Comput. Chem. Eng. 28, 1121–1129 (2004)CrossRefGoogle Scholar
  52. 52.
    Saaty T.L., Gass S.I.: Parametric objective function (part 1). J. Oper. Res. Soc. Am. 2(3), 316–319 (1954)Google Scholar
  53. 53.
    Sahinidis N.V.: BARON: User’s Manual Version 4.0. Department of Chemical Engineering, University of Illinois, Urbana-Campaign (2000)Google Scholar
  54. 54.
    Sakizlis, V., Dua, V., Perkins, J.D., Pistikopoulos E.N.: The explicit control law for hybrid systems via parametric programming. In: Proceedings of the American Control Conference, Anchorage, AK, pp. 674–679 (2002)Google Scholar
  55. 55.
    Sakizlis V., Perkins J.D., Pistikopoulos E.N.: Parametric controllers in simultaneous process and control design optimization. Ind. Eng. Chem. Res. 42, 4545–4563 (2003)CrossRefGoogle Scholar
  56. 56.
    Sakizlis V., Perkins J.D., Pistikopoulos E.N.: Recent advances in optimization-based simulataneous process and control design. Comput. Chem. Eng. 28, 2069–2086 (2004)CrossRefGoogle Scholar
  57. 57.
    Sakizlis V., Kakalis M.P., Dua V., Perkins J.D., Pistikopoulos E.N.: Design of robust controllers via parametric programming. Automatica 40, 189–201 (2004)CrossRefGoogle Scholar
  58. 58.
    Sakizlis V., Kakalis N.M.P., Dua V., Perkins J.D., Pistikopoulos E.N.: Design of robust model-based controllers via parametric programming. Automatica 40(2), 189–201 (2004)CrossRefGoogle Scholar
  59. 59.
    Sakizlis V., Perkins J.D., Pistikopoulos E.N.: Explicit solutions to optimal control problems for constrained continuous-time linear systems. IEE Proc. Control Theory Appl. 152(4), 443–452 (2005)CrossRefGoogle Scholar
  60. 60.
    Sakizlis, V., Kouramas, K.I., Faisca, N.P., Pistikopoulos, E.N.: Towards the design of parametric model predictive controllers for non-linear constrained systems. In: Assessment and Future Directions of Nonlinear Model Predictive Control. Lecture Notes in Control and Information Sciences, vol. 358. Springer, Berlin (2007)Google Scholar
  61. 61.
    Smith E.M.B., Pantelides C.C.: A symbolic reformulation: spatial branch-and-bound algorithm for the global optimisation of nonconvex minlps. Comput. Chem. Eng. 23, 457–478 (1999)CrossRefGoogle Scholar
  62. 62.
    Tøndel P., Johansen T.A., Bemporad A.: An algorithm for multi-parameffic quadratic programming and explicit mpc solutions. Automatica 39(3), 489–497 (2003)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC. 2009

Authors and Affiliations

  • N. P. Faísca
    • 1
  • V. D. Kosmidis
    • 2
  • B. Rustem
    • 1
  • E. N. Pistikopoulos
    • 1
  1. 1.Centre for Process Systems EngineeringImperial College LondonLondonUK
  2. 2.EDF Trading Markets LimitedLondonUK

Personalised recommendations