Journal of Global Optimization

, Volume 47, Issue 3, pp 329–342 | Cite as

A polynomial path-following interior point algorithm for general linear complementarity problems



Linear Complementarity Problems (LCPs) belong to the class of \({\mathbb{NP}}\) -complete problems. Therefore we cannot expect a polynomial time solution method for LCPs without requiring some special property of the coefficient matrix. Our aim is to construct interior point algorithms which, according to the duality theorem in EP (Existentially Polynomial-time) form, in polynomial time either give a solution of the original problem or detects the lack of property \({\mathcal{P}_*(\tilde\kappa)}\) , with arbitrary large, but apriori fixed \({\tilde\kappa}\)). In the latter case, the algorithms give a polynomial size certificate depending on parameter \({\tilde{\kappa}}\) , the initial interior point and the input size of the LCP). We give the general idea of an EP-modification of interior point algorithms and adapt this modification to long-step path-following interior point algorithms.


Linear complementarity problem Sufficient matrix \({\mathcal{P}_*}\) -matrix Interior point method Long-step method 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Cameron, K., Edmonds, J.: Existentially polytime theorems. In: Polyhedral Combinatorics (Morristown, NJ, 1989), DIMACS Series in Discrete Mathematics and Theoretical Computer Science Discrete series 1, pp. 83–100. American Mathematical Society, Providence, RI (1990)Google Scholar
  2. 2.
    Cottle R.W., Pang J.-S., Venkateswaran V.: Sufficient matrices and the linear complementarity problem. Linear Algebra Appl. 114/115, 231–249 (1989)CrossRefGoogle Scholar
  3. 3.
    Csizmadia Zs., Illés T.: New criss-cross type algorithms for linear complementarity problems with sufficient matrices. Optim. Methods Software 21, 247–266 (2006)CrossRefGoogle Scholar
  4. 4.
    den Hertog D., Roos C., Terlaky T.: The Linear Complementarity Problem, Sufficient Matrices and the Criss–Cross Method. Linear Algebra Appl. 187, 1–14 (1993)CrossRefGoogle Scholar
  5. 5.
    Fukuda K., Terlaky T.: Linear complementarity and oriented matroids. J. Oper. Res. Soc. Jpn. 35, 45–61 (1992)Google Scholar
  6. 6.
    Fukuda K., Namiki M., Tamura A.: EP theorems and linear complementarity problems. Discrete Appl. Math. 84, 107–119 (1998)CrossRefGoogle Scholar
  7. 7.
    Guu S.-M., Cottle R.W.: On a subclass of P 0. Linear Algebra Appl. 223/224, 325–335 (1995)CrossRefGoogle Scholar
  8. 8.
    Illés T., Roos, C., Terlaky, T.: Polynomial affine-scaling algorithms for P *(κ) linear complementarity problems. In: Gritzmann, P., Horst, R., Sachs, E., Tichatschke, R. (eds.) Recent Advances in Optimization, Proceedings of the 8th French-German Conference on Optimization, Trier, 21–26 July 1996, Lecture Notes in Economics and Mathematical Systems, vol. 452, pp. 119–137. Springer Verlag (1997)Google Scholar
  9. 9.
    Illés T., Peng J., Roos C., Terlaky T.: A strongly polynomial rounding procedure yielding a maximally complementary solution for P *(κ) linear complementarity problems (2000). SIAM J. Optim. 11(2), 320–340 (2000)CrossRefGoogle Scholar
  10. 10.
    Illés T., Nagy, M., Terlaky, T.: EP theorem for dual linear complementarity problems. J. Optim. Theory Appl. series 139(3), (2008)Google Scholar
  11. 11.
    Jansen B., Roos C., Terlaky T.: A family of polynomial affine scaling algorithms for positive semi-definite linear complementarity problems. SIAM J. Optim. 7, 126–140 (1996)CrossRefGoogle Scholar
  12. 12.
    Kojima M., Mizuno S., Yoshise A.: A polynomial-time algorithm for a class of linear complementarity problems. Math. Program. 44, 1–26 (1989)CrossRefGoogle Scholar
  13. 13.
    Kojima, M., Megiddo, N., Noma, T., Yoshise, A.: A unified approach to interior point algorithms for linear complementarity problems. Lecture Notes in Computer Science, vol. 538. Springer Verlag, Berlin, Germany (1991)Google Scholar
  14. 14.
    Murty K.G.: Linear and Combinatorial Programming. Wiley, New York-London-Sydney (1976)Google Scholar
  15. 15.
    Peng, J., Roos, C., Terlaky, T.: New complexity analysis of primal-dual Newton methods for P *(κ) linear complementarity problems. In: Frenk, J.B.G., Roos, C., Terlaky, T., Zhang, S. High Performance Optimization Techniques, pp. 245–266. Kluwer Academic Publishers, Dordrecht (1999)Google Scholar
  16. 16.
    Potra F.A.: The Mizuno-Todd-Ye algorithm in a larger neighborhood of the central path. Eur. J. Oper. Res. 143, 257–267 (2002)CrossRefGoogle Scholar
  17. 17.
    Potra F.A., Liu X.: Predictor-corrector methods for sufficient linear complementarity problems in a wide neighborhood of the central path. Optim. Methods Software 20(1), 145–168 (2005)CrossRefGoogle Scholar
  18. 18.
    Roos, C., Terlaky, T., Vial, J.-Ph.: Theory and Algorithms for Linear Optimization, An Interior Point Approach. Wiley-Interscience Series in Discrete Mathematics and Optimization, Wiley, New York, USA, 1997 (Second edition: Interior Point Methods for Linear Optimization, Springer, New York) (2006)Google Scholar
  19. 19.
    Väliaho H.: P *-matrices are just sufficient. Linear Algebra Appl. 239, 103–108 (1996)Google Scholar
  20. 20.
    Väliaho H.: Determining the handicap of a sufficient matrix. Linear Algebra Appl. 253, 279–298 (1997)CrossRefGoogle Scholar
  21. 21.
    Ye Y., Anstreicher K.: On quadratic and \({O(\sqrt{n}L)}\) convergence of a predictor-corrector algorithm for LCP. Math. Program. 62, 537–551 (1993)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC. 2008

Authors and Affiliations

  1. 1.Department of Management ScienceStrathclyde UniversityGlasgowUK
  2. 2.Department of Operation ResearchEötvös Loránd University of ScienceBudapestHungary
  3. 3.School of Computational Engineering and Science, Department of Computing and SoftwareMcMaster UniversityHamiltonCanada

Personalised recommendations