Journal of Global Optimization

, Volume 43, Issue 4, pp 513–531

Improving the efficiency of DC global optimization methods by improving the DC representation of the objective function



There are infinitely many ways of representing a d.c. function as a difference of convex functions. In this paper we analyze how the computational efficiency of a d.c.optimization algorithm depends on the representation we choose for the objective function, and we address the problem of characterizing and obtaining a computationally optimal representation. We introduce some theoretical concepts which are necessary for this analysis and report some numerical experiments.


Dc representation Dc program Outer approximation Branch and bound Semi-infinite program 

Mathematics Subject Classification (2000)

90C26 90C30 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Brunat J.M., Montes A. (2001) The power-composition determinant and its application to global optimization. SIAM J. Matrix Anal.Appl. 23(2): 459–471CrossRefGoogle Scholar
  2. 2.
    Chambadal L., Ovaert J.L. (1968) Algèbre Linéaire et Algèbre Tensorielle. Dunod Université, Dunod, ParisGoogle Scholar
  3. 3.
    Ferrer A. (2001) Representation of a polynomial function as a difference of convex polynomials, with an application. Lect. Notes Econ. Math. Syst. 502: 189–207Google Scholar
  4. 4.
    Ferrer A. (2005) Applying global optimization to a problem in short-term hydrotermal scheduling. Nonconvex Optim. Appl. 77: 263–285CrossRefGoogle Scholar
  5. 5.
    Heredia F.J., Nabona N. (1995) Optimum short-term hydrothermal scheduling with spinning reverse through network flows. IEEE Trans. Power Syst. 10(3): 1642–1651CrossRefGoogle Scholar
  6. 6.
    Hiriart-Urruty J.B. (1985) Generalized differentiability, duality and optimization for problems dealing with differences of convex functions. Lect. Notes Econ. Math. Syst. 256: 37–69Google Scholar
  7. 7.
    Horst, R., Tuy, H.: Global optimization. Deterministic Approaches. Springer-Verlag (1990)Google Scholar
  8. 8.
    Horst R., Pardalos P.M., Thoai N.V. (1995) Introduction to global optimization. Kluwer Academic Publishers, DordrechtGoogle Scholar
  9. 9.
    Kaliski J., Haglin D., Roos C., Terlaky T. (1997) Logarithmic barrier decomposition methods for semi-infinite programming. Int. Trans. Oper. Res. 4(4): 285–303CrossRefGoogle Scholar
  10. 10.
    Luc D.T., Martínez-Legaz J.E., Seeger A. (1998) Least deviation decomposition with respect to a pair of convex sets. J. Convex Anal. 6(1): 115–140Google Scholar
  11. 11.
    Martínez-Legaz J.E., Seeger A. (1994) A general cone decomposition theory based on efficiency. Math. Program. 65(1): 1–20CrossRefGoogle Scholar
  12. 12.
    Tuy H.D.C. (1995) optimization: theory, methods and algorithms. Handbook of global optimization. Nonconvex Optim. Appl. 2: 149–216Google Scholar
  13. 13.
    Tuy H. (1998) Convex analysis and global optimization. Kluwer Academic Publishers, DordrechtGoogle Scholar
  14. 14.
    Zhi-Quan Luo, Roos C., Terlaky T. (1999) Complexity analysis of logarithmic barrier decomposition methods for semi-infinite linear programming. Appl. Numer. Math. 29: 379–394CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC. 2008

Authors and Affiliations

  1. 1.Departament de Matemàtica Aplicada IUniversitat Politècnica de CatalunyaBarcelonaSpain
  2. 2.Departament d’Economia i d’Història EconòmicaUniversitat Autonoma de BarcelonaBarcelonaSpain

Personalised recommendations