Journal of Global Optimization

, 45:3

A review of recent advances in global optimization

Article

Abstract

This paper presents an overview of the research progress in deterministic global optimization during the last decade (1998–2008). It covers the areas of twice continuously differentiable nonlinear optimization, mixed-integer nonlinear optimization, optimization with differential-algebraic models, semi-infinite programming, optimization with grey box/nonfactorable models, and bilevel nonlinear optimization.

Keywords

Global optimization NLP MINLP DAE SIP Nonfactorable models Bilevel optimization 

References

  1. Adams W.P., Sherali H.D.: A hierarchy of relaxations leading to the convex hull representation for general discrete optimization problems. Ann. Oper. Res. 140(1), 21–47 (2005)CrossRefGoogle Scholar
  2. Adhya N., Tawarmalani M., Sahinidis N.V.: A Lagrangian approach to the pooling problems. Ind. Eng. Chem. Res. 38, 1956–1972 (1999)CrossRefGoogle Scholar
  3. Adjiman, C.S., Papamichail, I.: A deterministic global optimization algorithm for problems with nonlinear dynamics. In: Floudas, C.A., Pardalos, P.M. (eds.) Frontiers in Global Optimization, pp. 1–24. Kluwer Academic Publishers (2003)Google Scholar
  4. Adjiman C.S., Dallwig S., Floudas C.A., Neumaier A.: A global optimization method, αBB, for general twice-differentiable NLPs – I. Theoretical advances. Comput. Chem. Eng. 22(9), 1137–1158 (1998a)CrossRefGoogle Scholar
  5. Adjiman C.S., Androulakis I.P., Floudas C.A.: A global optimization method, αBB, for general twice–differentiable NLPs – II. Implementation and computational results. Comput. Chem. Eng. 22(9), 1159–1179 (1998b)CrossRefGoogle Scholar
  6. Adjiman C.S., Androulakis I.P., Floudas C.A.: Global optimization of mixed-integer nonlinear problems. AIChE J. 46, 1769 (2000)CrossRefGoogle Scholar
  7. Akrotirianakis I.G., Floudas C.A.: A new class of improved convex underestimators for twice continuously differentiable constrained NLPs. J. Glob. Optim. 30(4), 367–390 (2004a)CrossRefGoogle Scholar
  8. Akrotirianakis I.G., Floudas C.A.: Computational experience with a new class of convex underestimators: box-constrained NLP problems. J. Glob. Optim. 29(3), 249–264 (2004b)CrossRefGoogle Scholar
  9. Alex J., Tschepetzki R., Jumar U., Obenaus F., Rosenwinkel K.H.: Analysis and design of suitable model structures for activated sludge tanks with circulating flow. Water Sci. Technol. 39(4), 55–60 (1999)CrossRefGoogle Scholar
  10. Ali M.M., Khompatraporn C., Zabinsky Z.B.: A numerical evaluation of several stochastic algorithms on selected continuous global optimization test problems. J. Glob. Optim. 31, 635–672 (2005)CrossRefGoogle Scholar
  11. Amaral P., Judice J., Sherali H.D.: A reformulation-linearization-convexification algorithm for optimal correction of an inconsistent system of linear constraints. Comput. Oper. Res. 35(5), 1494–1509 (2008)CrossRefGoogle Scholar
  12. Androulakis, I.P., Floudas, C.A.: Distributed branch and bound algorithms in global optimization. In: Pardalos, P.M. (ed.) IMA Volumes in Mathematics and Its Applications, vol. 106, Parallel Processing of Discrete Problems, pp. 1–36. Springer-Verlag (1998)Google Scholar
  13. Angira R., Santosh A.: Optimization of dynamic systems: a trigonometric differential evolution approach. Comput. Chem. Eng. 31(9), 1055–1063 (2007)CrossRefGoogle Scholar
  14. Audet, C., Hansen, P., Savard, G.: Essays and Surveys in Global Optimization. GERAD 25th Anniversary Series. Springer (2005)Google Scholar
  15. Babahadda H., Gadhi N.: Necessary optimality conditions for bilevel optimization problems using convexificators. J. Glob. Optim. 34(4), 535–549 (2006)CrossRefGoogle Scholar
  16. Banga, J.R. Moles, C.G., Alonso, A.A.: Global optimization of bioprocesses using stochastic and hybrid methods. In: Floudas, C.A., Pardalos, P.M.(eds.) Frontiers in Global Optimization, pp. 45–70. Kluwer Academic Publishers (2003a)Google Scholar
  17. Banga J.R., Balsa-Canto E., Moles C.G., Alonso A.A.: Improving food processing using modern optimization methods. Trends Food Sci. Technol. 14, 131–144 (2003b)CrossRefGoogle Scholar
  18. Banga J.R., Versyck K.J., Van Impe J.F.: Computation of optimal identification experiments for nonlinear dynamic process models: a stochastic global optimization approach. Ind. Eng. Chem. Res. 41, 2425–2430 (2002)CrossRefGoogle Scholar
  19. Bard, J.F.: Practical Bilevel Optimization. Nonconvex Optimization and Its Applications. Kluwer Academic Publishers (1998)Google Scholar
  20. Barton P.I., Lee C.K.: Global dynamic optimization of linear time varying hybrid systems. Dyn. Contin. Discrete Impuls. Syst. B. S, 153–158 (2003)Google Scholar
  21. Barton P.I., Lee C.K.: Design of process operations using hybrid dynamic optimization. Comput. Chem. Eng. 28(6–7), 955–969 (2004)CrossRefGoogle Scholar
  22. Barton P.I., Banga J.R., Galan S.: Optimization of hybrid discrete/continuous dynamic systems. Comput. Chem. Eng. 24, 2171–2182 (2000)CrossRefGoogle Scholar
  23. Barton P.I., Lee C.K., Yunt M.: Optimization of hybrid systems. Comput. Chem. Eng. 30(10–12), 1576–1589 (2006)CrossRefGoogle Scholar
  24. Beck A., Ben-Tal A., Teboulle M.: Finding a global optimal solution for a quadratically constrained fractional quadratic problem with applications to the regularized total least squares. SIAM J. Matrix Anal. Appl. 28(2), 425–445 (2006)CrossRefGoogle Scholar
  25. Benson H.P.: On the global optimization of sums of nonlinear fractional functions over a convex set. J. Optim. Theory Appl. 121(1), 19–39 (2004)CrossRefGoogle Scholar
  26. Benson H.P.: Fractional programming with convex quadratic forms and functions. Eur. J. Oper. Res. 173(2), 351–369 (2006)CrossRefGoogle Scholar
  27. Benson H.P.: Solving sum of ratios fractional programs via concave minimization. J. Optim. Theory Appl. 135(1), 1–17 (2007a)CrossRefGoogle Scholar
  28. Benson H.P.: A simplicial branch and bound duality-bounds algorithm for the linear sum-of-ratios problem. Eur. J. Oper. Res. 182(2), 597–611 (2007b)CrossRefGoogle Scholar
  29. Bergamini M.L., Scenna N.J., Aguirre P.A.: Global optimal structures of heat exchanger networks by piecewise relaxation. Ind. Eng. Chem. Res. 46(6), 1752–1763 (2007)CrossRefGoogle Scholar
  30. Björk K.J., Westerlund T.: Global optimization of heat exchanger network synthesis problems with and without the isothermal mixing assumption. Comput. Chem. Eng. 26, 1581–1593 (2002)CrossRefGoogle Scholar
  31. Björk K.J., Lindberg P.O., Westerlund T.: Some convexifications in global optimization of problems containing signomial terms. Comput. Chem. Eng. 27, 669–679 (2003)CrossRefGoogle Scholar
  32. Bhattacharjee B., Green W.H., Barton P.I.: Interval methods for semi-infinite programming. Comput. Optim. Appl. 30(1), 63–93 (2005a)CrossRefGoogle Scholar
  33. Bhattacharjee B., Lemonidis P., Green W.H., Barton P.I.: Global solution of semi-infinite programs. Math. Program. 103(2), 283–307 (2005b)CrossRefGoogle Scholar
  34. Birgin, E.G., Floudas, C.A., Martinez, J.M.: Global optimization using an augmented Lagrangian method with variable lower-level constraints. Math. Program., submitted for publication (2008)Google Scholar
  35. Borradaile G., Van Hentenryck P.: Safe and tight linear estimators for global optimization. Math. Program. 102, 495–517 (2005)CrossRefGoogle Scholar
  36. Bringas E., Karuppiah R., Roman M.F.S., Ortiz I., Grossmann I.E.: Optimal groundwater remediation network design using selective membranes. Ind. Eng. Chem. Res. 46(17), 5555–5569 (2007)CrossRefGoogle Scholar
  37. Byrne R.P., Bogle I.D.L.: Global optimization of constrained non-convex programs using reformulation and interval analysis. Comput. Chem. Eng. 23, 1341 (1999)CrossRefGoogle Scholar
  38. Byrne R.P., Bogle I.D.L.: Global optimization of molecular process flowsheets. Ind. Eng. Chem. Res. 39, 4296–4301 (2000)CrossRefGoogle Scholar
  39. Campelo M., Scheimberg S.: A study of local solutions in linear bilevel programming. J. Optim. Theory Appl. 125(1), 63–84 (2005)CrossRefGoogle Scholar
  40. Caratzoulas S., Floudas C.A.: A trigonometric convex underestimator for the base functions in Fourier space. J. Optim. Theory Appl. 124(2), 339–362 (2005)CrossRefGoogle Scholar
  41. Casado L.G., Garcia I., Sergeyev Y.D.: Interval algorithms for finding the minimal root in a set of multiextremal one-dimensional nondifferentiable functions. SIAM J. Sci. Comput. 24(2), 359–376 (2002)CrossRefGoogle Scholar
  42. Casado L.G., Martinez J.A., Garcia I., Sergeyev Y.D.: New interval analysis support functions using gradient information in a global minimization algorithm. J. Glob. Optim. 25, 345–362 (2003)CrossRefGoogle Scholar
  43. Chachuat, B., Latifi, M.A.: A new approach in deterministic global optimization of problems with ordinary differential equations. In: Floudas, C.A., Pardalos, P.M. (eds.) Frontiers in Global Optimization, pp. 83–108. Kluwer Academic Publishers (2003)Google Scholar
  44. Chachuat B., Singer A.B., Barton P.I.: Global mixed-integer dynamic optimization. AIChE J. 51(8), 2235–2253 (2005)CrossRefGoogle Scholar
  45. Chachuat B., Singer A.B., Barton P.I.: Global methods for dynamic optimization and mixed-integer dynamic optimization. Ind. Eng. Chem. Res. 45(25), 8373–8392 (2006)CrossRefGoogle Scholar
  46. Chang Y.J., Sahinidis N.V.: Optimization of metabolic pathways under stability considerations. Comput. Chem. Eng. 29(3), 467–479 (2005)CrossRefGoogle Scholar
  47. Chaovalitwongse W., Pardalos P.M., Prokopyev O.A.: A new linearization technique for multi-quadratic 0–1 programming problems. Oper. Res. Lett. 32(6), 517–522 (2004)CrossRefGoogle Scholar
  48. Cheung A., Adjiman C.S., Kolar P., Ishikawa T.: Global optimization for clusters of flexible molecules-solvent-solute interaction energy calculations. Fluid Phase Equilib. 194, 169–183 (2002)CrossRefGoogle Scholar
  49. Chinchuluun A., Pardalos P.M., Enkhbat R.: Global minimization algorithms for concave quadratic programming problems. Optimization 54(6), 627–639 (2005)CrossRefGoogle Scholar
  50. D’Apuzzo, M., Marino, M., Migdalas, A., Pardalos, P.M., Toraldo, G.: Parallel computing in global optimization. In: Kontoghiorghes, E.J. (ed.) Handbook of Parallel Computing and Statistics, pp. 259–282. Chapman & Hall/CRC (2006)Google Scholar
  51. Davis E., Ierapetritou M.: A kriging method for the solution of nonlinear programs with black-box functions. AIChE J. 53(8), 2001–2012 (2007)CrossRefGoogle Scholar
  52. Davis, E., Ierapetritou, M.: A kriging based method for the solution of mixed-integer nonlinear programs containing black-box functions. J. Glob. Optim. (2008, in press)Google Scholar
  53. De Saboia C.H.M., Campelo M., Scheimberg S.: A computational study of global algorithms for linear bilevel programming. Numer. Algorithms 35(2–4), 155–173 (2004)CrossRefGoogle Scholar
  54. Ding X.S., Al-Khayyal F.: Accelerating convergence of cutting plane algorithms for disjoint bilinear programming. J. Glob. Optim. 38(3), 421–436 (2007)CrossRefGoogle Scholar
  55. Doye J.P.K., Leary R.H., Locatelli M., Schoen F.: Global optimization of Morse clusters by potential energy transformations. INFORMS J. Comput. 16(4), 371–379 (2004)CrossRefGoogle Scholar
  56. Downs J.J., Vogel E.F.: A plant-wide industrial-process control problem. Comput. Chem. Eng. 17(3), 245–255 (1993)CrossRefGoogle Scholar
  57. Dua V., Bozinis N.A., Pistikopoulos E.N.: A multiparametric programming approach for mixed-integer quadratic engineering problems. Comput. Chem. Eng. 26(4–5), 715–733 (2002)CrossRefGoogle Scholar
  58. Dua V., Papalexandri K.P., Pistikopoulos E.N.: Global optimization issues in multiparametric continuous and mixed-integer optimization problems. J. Glob. Optim. 30(1), 59–89 (2004)CrossRefGoogle Scholar
  59. Dur M., Horst R., Locatelli M.: Necessary and sufficient global optimality conditions for convex minimization revisited. J. Math. Anal. Appl. 217, 637–639 (1998)CrossRefGoogle Scholar
  60. Dzemyda, G., Saltenis, V., Zilinskas, A.: Stochastic and Global Optimization. Nonconvex Optimization and Its Applications. Kluwer Academic Publishers (2002)Google Scholar
  61. Egea J.A., Rodriguez-Fernandez M., Banga J.R., Marti R.: Scatter search for chemical and bio-process optimization. J. Glob. Optim. 37(3), 481–503 (2007a)CrossRefGoogle Scholar
  62. Egea J.A., Vries D., Alonso A.A., Banga J.R.: Global optimization for integrated design and control of computationally expensive process models. Ind. Eng. Chem. Res. 46(26), 9148–9157 (2007b)CrossRefGoogle Scholar
  63. Egea, J.A., Vazquez, E., Banga, J.R., Marti, R.: Improved scatter search for the global optimization of computationally expensive dynamic models. J. Glob. Optim. (2008, in press)Google Scholar
  64. Emet S., Westerlund T.: Comparisons of solving a chromatographic separation problem using MINLP methods. Comput. Chem. Eng. 28(5), 673–682 (2004)CrossRefGoogle Scholar
  65. Esposito W.R., Floudas C.A.: Global optimization in parameter estimation of nonlinear algebraic models via the error-in-variables approach. Ind. Eng. Chem. Res. 35(5), 1841–1858 (1998)CrossRefGoogle Scholar
  66. Esposito W.R., Floudas C.A.: Global optimization for the parameter estimation of differential-algebraic systems. Ind. Eng. Chem. Res. 39(5), 1291–1310 (2000a)CrossRefGoogle Scholar
  67. Esposito W.R., Floudas C.A.: Determistic global optimization in nonlinear optimal control problems. J. Glob. Optim. 17, 97–126 (2000b)CrossRefGoogle Scholar
  68. Esposito W.R., Floudas C.A.: Comments on global optimization for the parameter estimation of differential algebraic systems. Ind. Eng. Chem. Res. 40, 490 (2001)CrossRefGoogle Scholar
  69. Esposito W.R., Floudas C.A.: Deterministic global optimization in isothermal reactor network synthesis. J. Glob. Optim. 22, 59–95 (2002)CrossRefGoogle Scholar
  70. Exler O., Antelo L.T., Egea J.A., Alonso A.A., Banga J.R.: A tabu search-based algorithm for mixed-integer nonlinear problems and its application to integrated process and control system design. Comput. Chem. Eng. 32(8), 1877–1891 (2008)CrossRefGoogle Scholar
  71. Faisca N.P., Dua V., Rustem B., Saraiva P.M., Pistikopoulos E.N.: Parametric global optimization for bilevel programming. J. Glob. Optim. 38(4), 609–623 (2007)CrossRefGoogle Scholar
  72. Fang S.C., Gao D.Y., Sheu R.L., Wu S.Y.: Canonical dual approach to solving 0-1 quadratic programming problems. J. Ind. Manag. Optim. 4(1), 125–142 (2008)Google Scholar
  73. Feo T.A., Resende M.G.C.: A probabilistic heuristic for a computationally difficult set covering problem. Oper. Res. Lett. 8(2), 67–71 (1989)CrossRefGoogle Scholar
  74. Feo T.A., Resende M.G.C.: Greedy randomized adaptive search procedures. J. Glob. Optim. 6(2), 109–133 (1995)CrossRefGoogle Scholar
  75. Floudas, C.A.: Nonlinear and Mixed-Integer Optimization: Fundamentals and Applications. Oxford University Press (1995)Google Scholar
  76. Floudas, C.A.: Deterministic Global Optimization: Theory, Methods and Applications. Nonconvex Optimization and Its Applications. Kluwer Academic Publishers (2000a)Google Scholar
  77. Floudas C.A.: Global optimization in design and control of chemical process systems. J. Process Control 10, 125 (2000b)CrossRefGoogle Scholar
  78. Floudas C.A.: Research challenges, opportunities and synergism in systems engineering and computational biology. AIChE J. 51(7), 1872–1884 (2005)CrossRefGoogle Scholar
  79. Floudas C.A.: Computational methods in protein structure prediction. Biotechnol. Bioeng. 97(2), 207–213 (2007)CrossRefGoogle Scholar
  80. Floudas C.A., Jongen H.T.: Global optimization: local minima and transition points. J. Glob. Optim. 32, 409–415 (2005)CrossRefGoogle Scholar
  81. Floudas, C.A., Kreinovich, V.: Towards optimal techniques for solving global optimization problems: symmetry-based approach. In: Törn, A., Zilinskas, J. (eds.) Models and Algorithms for Global Optimization, pp. 21–42. Springer (2007a)Google Scholar
  82. Floudas C.A., Kreinovich V.: On the functional form of convex underestimators for twice continuously differentiable functions. Optim. Lett. 1, 187–192 (2007b)CrossRefGoogle Scholar
  83. Floudas, C.A., Pardalos, P.M.: Optimization in Computational Chemistry and Molecular Biology – Local and Global Approaches. Nonconvex Optimization and its Applications. Kluwer Academic Publishers (2000)Google Scholar
  84. Floudas, C.A., Pardalos, P.M. (eds.): Encyclopedia of Optimization, 2nd edn. Kluwer Academic Publishers (2001)Google Scholar
  85. Floudas, C.A., Pardalos, P.M.: Frontiers in Global Optimization. Nonconvex Optimization and Its Applications. Kluwer Academic Publishers (2003)Google Scholar
  86. Floudas, C.A., Pardalos, P.M. (eds.): Encyclopedia of Optimization, 2nd edn. Kluwer Academic Publishers (2008)Google Scholar
  87. Floudas C.A., Stein O.: The adaptive convexification algorithm: a feasible point method for semi-infinite programming. SIAM J. Optim. 18(4), 1187–1208 (2007)CrossRefGoogle Scholar
  88. Floudas C.A., Visweswaran V.: A global optimization algorithm (GOP) for certain classes of nonconvex NLPs. 1. Theory. Comput. Chem. Eng. 14(12), 1397–1417 (1990)CrossRefGoogle Scholar
  89. Floudas C.A., Aggarwal A., Ciric A.R.: Global optimum search for non convex NLP and MINLP problems. Comput. Chem. Eng. 13(10), 1117–1132 (1989)CrossRefGoogle Scholar
  90. Floudas, C.A., Pardalos, P.M., Adjiman, C.S., Esposito, W.R., Gümüş, Z.H., Harding, S.T., Klepeis, J.L., Meyer, C., Schweiger, C.A.: Handbook of Test Problems in Local and Global Optimization. Kluwer Academic Publishers (1999)Google Scholar
  91. Floudas C.A., Gümüş Z.H., Ierapetritou M.G.: Global optimization in design under uncertainty: feasibility test and flexibility index problems. Ind. Eng. Chem. Res. 40, 4267–4282 (2001)CrossRefGoogle Scholar
  92. Floudas C.A., Akrotirianakis I.G., Caratzoulas S., Meyer C.A., Kallrath J.: Global optimization in the 21st century: advances and challenges. Comput. Chem. Eng. 29(6), 1185–1202 (2005)CrossRefGoogle Scholar
  93. Floudas C.A., Fung H.K., McAllister S.R., Monningmann M., Rajgaria R.: Advances in protein structure prediction and de novo protein design: a review. Chem. Eng. Sci. 61(3), 966–988 (2006)CrossRefGoogle Scholar
  94. Foteinou, P.T., Saharidis, G.K., Ierapetritou, M.G., Androulakis, I.P.: A mixed-integer optimization framework for the synthesis and analysis of regulatory networks. J. Glob. Optim. (2008, in press)Google Scholar
  95. Freitas L., Platt G.M., Henderson N.: Novel approach for the calculation of critical points in binary mixtures using global optimization. Fluid Phase Equilib. 225(1–2), 29–37 (2004)CrossRefGoogle Scholar
  96. Frits E.R., Markot M.C., Lelkes Z., Fonyo Z., Csendes T., Rev E.: Use of an interval global optimization tool for exploring feasibility of batch extractive distillation. J. Glob. Optim. 38(2), 297–313 (2007)CrossRefGoogle Scholar
  97. Gao D.Y.: Perfect duality theory and complete solutions to a class of global optimization problems. Optimization 52(4–5), 467–493 (2003)CrossRefGoogle Scholar
  98. Gao D.Y.: Canonical duality theory and solutions to constrained nonconvex quadratic programming – dedicated to Professor Ivar Ekeland on the occasion of his 60th birthday. J. Glob. Optim. 29(4), 377–399 (2004)CrossRefGoogle Scholar
  99. Gao D.Y.: Sufficient conditions and perfect duality in nonconvex minimization with inequality constraints. J. Ind. Manag. Optim. 1(1), 53–63 (2005)Google Scholar
  100. Gao D.Y.: Solutions and optimality criteria to box constraint nonconvex minimization problems. J. Ind. Manag. Optim. 3(2), 293–304 (2007)Google Scholar
  101. Gattupalli, R.R., Lucia, A.: Molecular conformation of n-alkanes using terrain/funneling methods. J. Glob. Optim. (2008, in press)Google Scholar
  102. Gau C.Y., Stadtherr M.A.: Reliable nonolinear parameter estimation using interval analysis: error-in-variable approach. Comput. Chem. Eng. 24, 631–637 (2000)CrossRefGoogle Scholar
  103. Gau C.Y., Stadtherr M.A.: New interval methodologies for reliable chemical modeling. Comput. Chem. Eng. 26, 827–840 (2002a)CrossRefGoogle Scholar
  104. Gau C.Y., Stadtherr M.A.: Dynamic load balancing for parallel interval-Newton using message passing. Comput. Chem. Eng. 26, 811–825 (2002b)CrossRefGoogle Scholar
  105. Gau C.Y., Stadtherr M.A.: Deterministic global optimization for error-in-variables parameter estimation. AIChE J. 48, 1192 (2002c)CrossRefGoogle Scholar
  106. Gau C.Y., Brennecke J.F., Stadtherr M.A.: Reliable nonlinear parameter estimation in VLE modeling. Fluid Phase Equilib. 168, 1–18 (2000)CrossRefGoogle Scholar
  107. Geletu A., Hoffmann A.: A conceptual method for solving generalized semi-infinite programming problems via global optimization by exact discontinuous penalization. Eur. J. Oper. Res. 157(1), 3–15 (2004)CrossRefGoogle Scholar
  108. Ghosh S., Zhu T., Grossmann I.E., Ataai M.M., Domach M.M.: Closing the loop between feasible flux scenario identification for construct evaluation and resolution of realized fluxes via NMR. Comput. Chem. Eng. 29(3), 459–466 (2005)CrossRefGoogle Scholar
  109. Goberna M.A., Lopez M.A.: Linear semi-infinite programming theory: an updated survey. Eur. J. Oper. Res. 143(2), 390–405 (2002)CrossRefGoogle Scholar
  110. Gounaris C.E., Floudas C.A.: Tight convex underestimators for C 2-continuous problems: I. Univariate functions. J. Glob. Optim. 42(1), 51–67 (2008a)CrossRefGoogle Scholar
  111. Gounaris C.E., Floudas C.A.: Tight convex underestimators for C 2-continuous problems: II Multivariate functions. J. Glob. Optim. 42(1), 69–89 (2008b)CrossRefGoogle Scholar
  112. Gounaris C.E., Floudas C.A.: Convexity of products of univariate functions and convexification transformations for geometric programming. J. Optim. Theory Appl. 138(3), 407–427 (2008c)CrossRefGoogle Scholar
  113. Goyal V., Ierapetritou M.G.: Framework for evaluating the feasibility/operability of nonconvex processes. AIChE J. 49(5), 1233–1240 (2003a)CrossRefGoogle Scholar
  114. Goyal, V., Ierapetritou, M.G.: MINLP optimization using simplicial approximation method for classes of non-convex problems. In: Floudas, C.A., Pardalos, P.M. (eds.) Frontiers in Global Optimization, pp.165–196. Kluwer Academic Publishers (2003b)Google Scholar
  115. Grossmann I.E., Lee S.: Generalized convex disjunctive programming: nonlinear convex hull relaxation. Comput. Optim. Appl. 26(1), 83–100 (2003)CrossRefGoogle Scholar
  116. Gümüş Z.H., Floudas C.A.: Global optimization of nonlinear bilevel programming problems. J. Glob. Optim. 20, 1–31 (2001)CrossRefGoogle Scholar
  117. Gümüş Z.H., Floudas C.A.: Global optimization of mixed-integer bilevel programming problems. Comput. Manag. Sci. 2, 181–212 (2005)CrossRefGoogle Scholar
  118. Gutmann H.M.: A radial basis function method for global optimization. J. Glob. Optim. 19(3), 201–227 (2001)CrossRefGoogle Scholar
  119. Hadjisavvas, N., Pardalos, P.M.: Advances in Convex Analysis and Global Optimization – Honoring the Memory of C. Caratheodory (1873–1950). Nonconvex Optimization and Its Applications. Kluwer Academic Publishers (2001)Google Scholar
  120. Hansen, E., Walster, G.W.: Global Optimization Using Interval Analysis. Pure and Applied Mathematics. Marcel Dekker (2004)Google Scholar
  121. Harding S.T., Floudas C.A.: Global optimization in multiproduct and multipurpose batch design under uncertainty. Ind. Eng. Chem. Res. 36(5), 1644–1664 (1997)CrossRefGoogle Scholar
  122. Harding S.T., Floudas C.A.: Phase stability with cubic equations of state: a global optimization approach. AIChE J. 46, 1422 (2000a)CrossRefGoogle Scholar
  123. Harding S.T., Floudas C.A.: Locating heterogeneous and reactive azeotropes. Ind. Eng. Chem. Res. 39, 1576 (2000b)CrossRefGoogle Scholar
  124. Harding S.T., Maranas C.D., McDonald C.M., Floudas C.A.: Locating all homogeneous azeotropes in multicomponent mixtures. Ind. Eng. Chem. Res. 36(1), 160–178 (1997)CrossRefGoogle Scholar
  125. Harjunkoski I., Westerlund T., Pörn R.: Numerical and environmental considerations on a complex industrial mixed integer nonlinear programming (MINLP) problem. Comput. Chem. Eng. 23, 1545–1561 (1999)CrossRefGoogle Scholar
  126. Henderson N., Freitas U., Platt G.M.: Prediction of critical points: a new methodology using global optimization. AIChE J. 50(6), 1300–1314 (2004)CrossRefGoogle Scholar
  127. Hertz D., Adjiman C.S., Floudas C.A.: Two results on bounding the roots of interval polynomials. Comput. Chem. Eng. 23, 1333 (1999)CrossRefGoogle Scholar
  128. Hiriart-Urruty J.B., Ledyav J.S.: A note in the characterization of the global maxima of a convex function over a convex set. J. Convex Anal. 3, 55–61 (1996)Google Scholar
  129. Hirsch M.J., Meneses C.N., Pardalos P.M., Resende M.G.C.: Global optimization by continuous grasp. Optim. Lett. 1(2), 201–212 (2007)CrossRefGoogle Scholar
  130. Horst, R., Tuy, H.: Global Optimization: Deterministic Approaches. Springer (2003)Google Scholar
  131. Horst, R., Pardalos, P.M., Thoai, N.V.: Introduction to Global Optimization. Nonconvex Optimization and its Applications. Kluwer Academic Publishers (2000)Google Scholar
  132. Hu J.Q., Fu M.C., Marcus S.I.: A model reference adaptive search method for global optimization. Oper. Res. 55(3), 549–568 (2007)CrossRefGoogle Scholar
  133. Hua J.Z., Brennecke J.F., Stadtherr M.A.: Reliable computation for phase stability using interval analysis: cubic equation of state models. Comput. Chem. Eng. 22(9), 1207 (1998a)CrossRefGoogle Scholar
  134. Hua J.Z., Brennecke J.F., Stadtherr M.A.: Enhanved interval analysis for phase stability: cubic equation of state models. Ind. Eng. Chem. Res. 37, 1519 (1998b)CrossRefGoogle Scholar
  135. Huang D., Allen T.T., Notz W.I., Zeng N.: Global optimization of stochastic black-box systems via sequential kriging meta-models. J. Glob. Optim. 34(3), 441–466 (2006)CrossRefGoogle Scholar
  136. Jiao H.W., Guo Y.R., Shen P.P.: Global optimization of generalized linear fractional programming with nonlinear constraints. Appl. Math. Comput. 183(2), 717–728 (2006)CrossRefGoogle Scholar
  137. Jones D.R.: A taxonomy of global optimization methods based on response surfaces. J. Glob. Optim. 21, 345 (2001)CrossRefGoogle Scholar
  138. Jones D.R., Schonlau M., Welch W.J.: Efficient global optimization of expensive black-box functions. J. Glob. Optim. 13, 455 (1998)CrossRefGoogle Scholar
  139. Kallrath, J.: Exact computation of global minima of a noncovex portfolio optimization problem. In: Floudas, C.A., Pardalos, P.M. (eds.) Frontiers in Global Optimization, pp. 237–254. Kluwer Academic Publishers (2003)Google Scholar
  140. Kallrath J.: Solving planning and design problems in the process industry using mixed integer and global optimization. Ann. Oper. Res. 140(1), 339–373 (2005)CrossRefGoogle Scholar
  141. Kallrath, J.: Cutting circles and polygons from area-minimizing rectangles. J. Glob. Optim. (2008,in press)Google Scholar
  142. Karuppiah R., Grossmann I.E.: Global optimization for the synthesis of integrated water systems in chemical processes. Comput. Chem. Eng. 30(4), 650–673 (2006)CrossRefGoogle Scholar
  143. Karuppiah R., Grossmann I.E.: Global optimization of multiscenario mixed integer nonlinear programming models arising in the synthesis of integrated water networks under uncertainty. Comput. Chem. Eng. 32, 145–160 (2008a)CrossRefGoogle Scholar
  144. Karuppiah R., Grossmann I.E.: A Lagrangean based branch-and-cut algorithm for global optimization of nonconvex mixed-integer nonlinear programs with decomposable structures. J. Glob. Optim. 41(2), 163–186 (2008b)CrossRefGoogle Scholar
  145. Karuppiah, R., Furman, K.C., Grossmann, I.E.: Global optimization for scheduling refinery crude oil operations. Comput. Chem. Eng. (2008,in press)Google Scholar
  146. Kesavan P., Barton P.I.: Generalized branch-and-cut framework for mixed-integer nonlinear optimization problems. Comput. Chem. Eng. 24, 1361–1366 (2000)CrossRefGoogle Scholar
  147. Kesavan P., Allgor R.L., Gadzke E.P., Barton P.I.: Outer approximation algorithms for separable nonconvex mixed-integer nonlinear problems. Math. Program. 100(3), 517–535 (2004)CrossRefGoogle Scholar
  148. Klepeis J.L., Floudas C.A.: A comparative study of global minimum energy conformations of hydrated peptides. J. Comput. Chem. 20(6), 636 (1999a)CrossRefGoogle Scholar
  149. Klepeis J.L., Floudas C.A.: Free energy calculations for peptides via deterministic global optimization. J. Chem. Phys. 110(15), 7491 (1999b)CrossRefGoogle Scholar
  150. Klepeis J.L., Floudas C.A.: Ab initio tertiary structure prediction of proteins. J. Glob. Optim. 25, 113 (2003a)CrossRefGoogle Scholar
  151. Klepeis J.L., Floudas C.A.: ASTRO-FOLD: a combinatorial and global optimization framework for ab initio prediction of three-dimensional structures of proteins from the amino-acid sequence. Biophys. J. 85, 2119 (2003b)CrossRefGoogle Scholar
  152. Klepeis J.L., Androulakis I.P., Ierapetritou M.G., Floudas C.A.: Predicting solvated peptide conformations via global minimization of energetic atom to atom interactions. Comput. Chem. Eng. 22(6), 765–788 (1998)CrossRefGoogle Scholar
  153. Klepeis J.L., Floudas C.A., Morikis D., Lambris J.D.: Predicting peptide structures using NMR data and deterministic global optimization. J. Comput. Chem. 20, 1354 (1999)CrossRefGoogle Scholar
  154. Klepeis J.L., Schafroth H.D., Westerberg K.M., Floudas C.A.: Deterministic global optimization and ab initio approaches for the structure prediction of polypeptides, dynamics of protein folding and protein-protein interactions. Adv. Chem. Phys. 120, 266–457 (2002)Google Scholar
  155. Klepeis J.L., Pieja M., Floudas C.A.: A new class of hybrid global optimization algorithms for peptide structure prediction: integrated hybrids. Comput. Phys. Commun. 151, 121 (2003a)CrossRefGoogle Scholar
  156. Klepeis J.L., Pieja M., Floudas C.A.: A new class of hybrid global optimization algorithms for peptide structure prediction: alternating hybrids and application to Met-Enkephalin and Melittin. Biophys. J. 84, 869 (2003b)CrossRefGoogle Scholar
  157. Lee, C.K., Barton, P.I.: Global dynamic optimization of linear hybrid systems. In: Floudas, C.A., Pardalos, P.M. (eds.) Frontiers in Global Optimization, pp. 289–312. Kluwer Academic Publishers (2003)Google Scholar
  158. Lee A., Grossmann I.E.: A global optimization algorithm for nonconvex generalized disjunctive programming and applications to process systems. Comput. Chem. Eng. 25, 1675–1697 (2001)CrossRefGoogle Scholar
  159. Lee S., Grossmann I.E.: Global optimization of nonlinear generalized disjunctive programming with bilinear equality constraints: applications to process networks. Comput. Chem. Eng. 27(11), 1557–1575 (2003)CrossRefGoogle Scholar
  160. Lee S., Grossmann I.E.: Logic-based modeling and solution of ninlinear discrete/continuous optimization problems. Ann. Oper. Res. 139(1), 267–288 (2005)CrossRefGoogle Scholar
  161. Lee C.K., Singer A.B., Barton P.I.: Global optimization of linear hybrid systems with explicit transitions. Syst. Control Lett. 51(5), 363–375 (2004)CrossRefGoogle Scholar
  162. Levitin E., Tichatschke R.: A branch-and-bound approach for solving a class of generalized semi-infinite programming problems. J. Glob. Optim. 13(3), 299–315 (1998)CrossRefGoogle Scholar
  163. Li H.L., Tsai J.F.: Treating free variables in generalized geometric global optimization programs. J. Glob. Optim. 33(1), 1–13 (2005)CrossRefGoogle Scholar
  164. Li D., Wu Z.Y., Lee H.W.J., Wang X.M., Zhang L.S.: Hidden convex minimization. J. Glob. Optim. 31(2), 211–233 (2005)CrossRefGoogle Scholar
  165. Li T., Wang Y.J., Liang Z., Pardalos P.M.: Local saddle point and a class of convexification methods for nonconvex optimization problems. J. Glob. Optim. 38(3), 405–419 (2007)CrossRefGoogle Scholar
  166. Li H.L., Tsai J.F., Floudas C.A.: Convex underestimation for posynomial functions of positive variables. Optim. Lett. 2(3), 333–340 (2008)CrossRefGoogle Scholar
  167. Liang Z.A., Huang H.X., Pardalos P.M.: Optimality conditions and duality for a class of nonlinear fractional programming problems. J. Optim. Theory Appl. 110(3), 611–619 (2001)CrossRefGoogle Scholar
  168. Liberti L.: Linearity embedded in nonconvex programs. J. Glob. Optim. 33(2), 157–196 (2005)CrossRefGoogle Scholar
  169. Liberti, L., Maculan, N.: Global Optimization: From Theory to Implementation. Nonconvex Optimization and Its Applications. Kluwer Academic Publishers (2006)Google Scholar
  170. Liberti L., Pantelides C.C.: Convex envelopes of monomials of odd degree. J. Glob. Optim. 25, 157–168 (2003)CrossRefGoogle Scholar
  171. Lin Y.D., Stadtherr M.A.: LP strategy for the interval-Newton method in deterministic global optimization. Ind. Eng. Chem. Res. 43(14), 3741–3749 (2004a)CrossRefGoogle Scholar
  172. Lin Y.D., Stadtherr M.A.: Advances in interval methods for deterministic global optimization in chemical engineering. J. Glob. Optim. 29(3), 281–296 (2004b)CrossRefGoogle Scholar
  173. Lin Y.D., Stadtherr M.A.: Deterministic global optimization for parameter estimation of dynamic systems. Ind. Eng. Chem. Res. 45(25), 8438–8448 (2006)CrossRefGoogle Scholar
  174. Lin Y.D., Stadtherr M.A.: Deterministic global optimization of nonlinear dynamic systems. AIChE J. 53(4), 866–875 (2007)CrossRefGoogle Scholar
  175. Lin X.X., Floudas C.A., Kallrath J.: Global solution approach for a nonconvex MINLP problem in product portfolio optimization. J. Glob. Optim. 32(3), 417–431 (2005)CrossRefGoogle Scholar
  176. Linderoth J.: A simplicial branch-and-bound algorithm for solving quadratically constrained quadratic programs. Math. Program. 103(2), 251–282 (2005)CrossRefGoogle Scholar
  177. Liu G.X.: A homotopy interior point method for semi-infinite programming problems. J. Glob. Optim. 37(4), 631–646 (2007)CrossRefGoogle Scholar
  178. Liu W.B., Floudas C.A.: A remark on the GOP algorithm for global optimization. J. Glob. Optim. 3(4), 519–521 (1993)CrossRefGoogle Scholar
  179. Liu Y., Teo K.L.: An adaptive dual parametrization algorithm for quadratic semi-infinite programming problems. J. Glob. Optim. 24(2), 205–217 (2002)CrossRefGoogle Scholar
  180. Liu Y., Teo K.L., Wu S.Y.: A new quadratic semi-infinite programming algorithm based on dual parametrization. J. Glob. Optim. 29(4), 401–413 (2004)CrossRefGoogle Scholar
  181. Long C.E., Polisetty P.K., Gatzke E.P.: Nonlinear model predictive control using deterministic global optimization. J. Process Control 16(6), 635–643 (2006)CrossRefGoogle Scholar
  182. Long C.E., Polisetty P.K., Gatzke E.P.: Deterministic global optimization for nonlinear model predictive control of hybrid dynamic systems. Int. J. Robust Nonlinear Control 17(13), 1232–1250 (2007)CrossRefGoogle Scholar
  183. Lucia A., Feng Y.: Global terrain methods. Comput. Chem. Eng. 26, 529–546 (2002)CrossRefGoogle Scholar
  184. Lucia A., Feng Y.: Multivariable terrain methods. AIChE J. 49, 2553 (2003)CrossRefGoogle Scholar
  185. Lucia A., DiMaggio P.A., Bellows M.L., Octavio L.M.: The phase behavior of n-alkane systems. Comput. Chem. Eng. 29(11–12), 2363–2379 (2005)CrossRefGoogle Scholar
  186. Lundell, A., Westerlund, J., Westerlund, T.: Some transformation techniques with applications in global optimization. J. Glob. Optim. (2008, in press)Google Scholar
  187. Luo Y.Q., Yuan X.G., Liu Y.J.: An improved PSO algorithm for solving non-convex NLP/MINLP problems with equality constraints. Comput. Chem. Eng. 31(3), 153–162 (2007)CrossRefGoogle Scholar
  188. Maier R.W., Brennecke J.F., Stadtherr M.A.: Reliable computation of homogeneous azeotropes. AIChE J. 44, 1745–1755 (1998)CrossRefGoogle Scholar
  189. Maranas C.D., Floudas C.A.: Global optimization in generalized geometric programming. Comput. Chem. Eng. 21, 351–370 (1997)CrossRefGoogle Scholar
  190. Marcovecchio M.G., Bergamini M.L., Aguirre P.: On saddle points of augmented Lagrangians for constrained nonconvex optimization. J. Glob. Optim. 34(3), 339–368 (2006)CrossRefGoogle Scholar
  191. Maringer, D., Parpas, P.: Global optimization of higher order moments in portfolio selection. J. Glob. Optim. (2008, in press)Google Scholar
  192. Martinez J.A., Casado L.G., Garcia I., Sergeyev Y.D., Toth B.: On an efficient use of gradient information for accelerating interval global optimization algorithms. Numer. Algorithms 37(1–4), 61–69 (2004)CrossRefGoogle Scholar
  193. McKinnon K., Mongeau M.: A generic global optimization algorithm for the chemical and phase equilibrium problem. J. Glob. Optim. 12, 325–351 (1998)CrossRefGoogle Scholar
  194. Meyer, C.A., Floudas, C.A.: Trilinear monomials with positive or negative domains: facets of convex and concave envelopes. In: Floudas, C.A., Pardalos, P.M. (eds.) Frontiers in Global Optimization, pp. 327–352. Kluwer Academic Publishers (2003)Google Scholar
  195. Meyer C.A., Floudas C.A.: Convex hull of trilinear monomials with mixed-sign domains. J. Glob. Optim. 29, 125–155 (2004)CrossRefGoogle Scholar
  196. Meyer C.A., Floudas C.A.: Convex envelopes for edge-concave functions. Math. Program. 103(2), 207–224 (2005a)CrossRefGoogle Scholar
  197. Meyer C.A., Floudas C.A.: Convex underestimation of twice continuously differentiable functions by piecewise quadratic perturbation: spline αBB underestimators. J. Glob. Optim. 32, 221–258 (2005b)CrossRefGoogle Scholar
  198. Meyer C.A., Floudas C.A.: Global optimization of a combinatorially complex generalized pooling problem. AIChE J. 52, 1027–1037 (2006)CrossRefGoogle Scholar
  199. Meyer C.A., Swartz C.L.E.: A regional convexity test for global optimization: application to the phase equilibrium problem. Comput. Chem. Eng. 22, 1407–1418 (1998)CrossRefGoogle Scholar
  200. Meyer C.A., Floudas C.A., Neumaier A.: Global optimization with nonfactorable constraints. Ind. Eng. Chem. Res. 41, 6413–6424 (2002)CrossRefGoogle Scholar
  201. Migdalas, A., Pardalos, P.M., Varbrand, P.: From Local to Global Optimization. Nonconvex Optimization and its Applications. Kluwer Academic Publishers (2001)Google Scholar
  202. Mitsos A., Barton P.I.: A dual extremum principle in thermodynamics. AIChE J. 53(8), 2131–2147 (2007)CrossRefGoogle Scholar
  203. Mitsos A., Lemonidis P., Lee C.K., Barton P.I.: Global solution of bilevel programs with a nonconvex inner program. SIAM J. Optim. 19(1), 77–113 (2008a)CrossRefGoogle Scholar
  204. Mitsos, A., Lemonidis, P., Barton, P.I.: Global solution of bilevel programs with a nonconvex inner program. J. Glob. Optim. (2008b, in press)Google Scholar
  205. Moles C.G., Gutierrez G., Alonso A.A., Banga J.R.: Integrated process design and control via global optimization. Ind. Eng. Chem. Res. 81, 507–517 (2003)Google Scholar
  206. Moloi N.P., Ali M.M.: An iterative global optimization algorithm for potential energy minimization. Comput. Optim. Appl. 30(2), 119–132 (2005)CrossRefGoogle Scholar
  207. Montagna J.M., Iribarren O.A., Vecchietti A.R.: Synthesis of biotechnological processes using generalized disjunctive programming. Ind. Eng. Chem. Res. 43(15), 4220–4232 (2004)CrossRefGoogle Scholar
  208. Munawar S.A., Gudi R.D.: A nonlinear transformation based hybrid evolutionary method for MINLP solution. Chem. Eng. Res. Des. 83(A10), 1218–1236 (2005)CrossRefGoogle Scholar
  209. Nahapetyan A., Pardalos P.M.: A bilinear relaxation based algorithm for concave piecewise linear network flow problems. J. Ind. Manag. Optim. 3(1), 71–85 (2007)Google Scholar
  210. Nahapetyan A., Pardalos P.M.: A bilinear reduction based algorithm for solving capacitated multi-item dynamic pricing problems. Comput. Oper. Res. 35(5), 1601–1612 (2008)CrossRefGoogle Scholar
  211. Neumaier, A.: Complete search in continuous global optimization and constraint satisfaction. In: Iserles, A. (ed.) Acta Numerica, pp. 271–369. Cambridge University Press (2004)Google Scholar
  212. Neumaier A., Shcherbina O., Huyer W., Vinko T.: A comparison of complete global optimization solvers. Math. Program. 103(2), 335–356 (2005)CrossRefGoogle Scholar
  213. Nichita D.V., Gomez S., Luna-Ortiz E.: Multiphase equilibria calculation by direct minimization of Gibbs free energy using tunneling global optimization method. J. Can. Petrol. Technol. 43(5), 13–16 (2004)Google Scholar
  214. Nichita D.V., Valencia C.D.D., Gomez S.: Volume-based thermodynamics global phase stability analysis. Chem. Eng. Commun. 193(10), 1194–1216 (2006)CrossRefGoogle Scholar
  215. Nie J., Demmel J., Gu M.: Global minimization of rational functions and the nearest GCDs. J. Glob. Optim. 40(4), 697–718 (2008)CrossRefGoogle Scholar
  216. Noureldin M.B., El-Halwagi M.: Interval-based targeting for pollution prevention via mass integration. Comput. Chem. Eng. 23, 1527–1543 (1999)CrossRefGoogle Scholar
  217. Ostrovsky G.M., Achenie L.E.K., Sinha M.: On the solution of mixed-integer nonlinear programming models for computer aided molecular design. Comput. Chem. Eng. 26, 645–660 (2002)CrossRefGoogle Scholar
  218. Ostrovsky G.M., Achenie L.E.K., Sinha M.: A reduced dimension branch-and-bound algorithm for molecular design. Comput. Chem. Eng. 27, 551–567 (2003)CrossRefGoogle Scholar
  219. Papamichail I., Adjiman C.S.: A rigorous global optimization algorithm for problems with ordinary differential equations. J. Glob. Optim. 24, 1–33 (2002)CrossRefGoogle Scholar
  220. Papamichail I., Adjiman C.S.: Global optimization of dynamic systems. Comput. Chem. Eng. 28(3), 403–415 (2004)CrossRefGoogle Scholar
  221. Papamichail I., Adjiman C.S.: Proof of convergence for a global optimization algorithm for problems with ordinary differential equations. J. Glob. Optim. 33(1), 83–107 (2005)CrossRefGoogle Scholar
  222. Pardalos, P.M., Romeijn, H.E.: Handbook of Global Optimization, vol. 2. Nonconvex Optimization and Its Applications. Kluwer Academic Publishers (2002)Google Scholar
  223. Pardalos P.M., Shylo O.V.: An algorithm for the job shop scheduling problem based on global equilibrium search techniques. Comput. Manag. Sci. 3(4), 331–348 (2006)CrossRefGoogle Scholar
  224. Pardalos P.M., Romeijn H.E., Tuy H.: Recent developments and trends in global optimization. J. Comput. Appl. Math. 124(1–2), 209–228 (2000)CrossRefGoogle Scholar
  225. Pardalos P.M., Chaovalitwongse W., Iasemidis L.D., Sackellares J.C., Shiau D.S., Carney P.R., Prokopyev O.A., Yatsenko V.A.: Seizure warning algorithm based on optimization and nonlinear dynamics. Math. Program. 101(2), 365–385 (2004)CrossRefGoogle Scholar
  226. Pardalos P.M., Prokopyev O.A., Shylo O.V., Shylo V.P.: Global equilibrium search applied to the unconstrained binary quadratic optimization problem. Optim. Methods Softw. 23(1), 129–140 (2008)CrossRefGoogle Scholar
  227. Parpas P., Rustem B., Pistikopoulos E.N.: Linearly constrained global optimization and stochastic differential equations. J. Glob. Optim. 36(2), 191–217 (2006)CrossRefGoogle Scholar
  228. Parpas, P., Rustem, B., Pistikopoulos, E.N.: Global optimization of robust chance constrained problems. J. Glob. Optim. (2008, in press)Google Scholar
  229. Parthasarathy G., El-Halwagi M.: Optimum mass integration strategies for condensation and allocation of multicomponent VOCs. Comput. Chem. Eng. 55, 881–895 (2000)Google Scholar
  230. Pistikopoulos, E.N., Dua, V., Ryu, J.: Global optimization of bilevel programming problems via parametric programming. In: Floudas, C.A., Pardalos, P.M. (eds.) Frontiers in Global Optimization, pp. 457–476. Kluwer Academic Publishers (2003)Google Scholar
  231. Pörn R., Westerlund T.: A cutting plane method for minimizing pseudo-convex functions in mixed integer case. Comput. Chem. Eng. 24, 2655–2665 (2000)CrossRefGoogle Scholar
  232. Pörn R., Harjunkoski I., Westerlund T.: Convexification of different classes of non-convex MINLP problems. Comput. Chem. Eng. 23, 439–448 (1999)CrossRefGoogle Scholar
  233. Price, K.V., Storn, R.M., Lampinen, J.A.: Differential Evolution: A Practical Approach to Global Optimization. Natural Computing Series. Springer (2005)Google Scholar
  234. Prokopyev O.A., Huang H.X., Pardalos P.M.: On complexity of unconstrained hyperbolic 0-1 programming problems. Oper. Res. Lett. 33(3), 312–318 (2005a)CrossRefGoogle Scholar
  235. Prokopyev O.A., Meneses C.N., Oliveira C.A.S., Pardalos P.M.: On multiple-ratio hyperbolic 0-1 programming problems. Pacific J. Optim. 1(2), 327–345 (2005b)Google Scholar
  236. Rebennack, S., Kallrath, J., Pardalos, P.M.: Column enumeration based decomposition techniques for a class of non-convex MINLP problems. J. Glob. Optim. (2008, in press)Google Scholar
  237. Regis R.G., Shoemaker C.A.: COnstrained global optimization of expensive black box functions using radial basis functions. J. Glob. Optim. 31(1), 153–171 (2005)CrossRefGoogle Scholar
  238. Regis R.G., Shoemaker C.A.: Improved strategies for radial basis function methods for global optimization. J. Glob. Optim. 37(1), 113–135 (2007)CrossRefGoogle Scholar
  239. Rubinov, A.: Abstract Convexity and Global Optimization. Nonconvex Optimization and Its Applications. Kluwer Academic Publishers (2000)Google Scholar
  240. Ryoo H.S., Sahinidis N.V.: Analysis of bounds for multilinear functions. J. Glob. Optim. 19, 403–424 (2001)CrossRefGoogle Scholar
  241. Ryoo H.S., Sahinidis N.V.: Global optimization of multiplicative programs. J. Glob. Optim. 26, 387–418 (2003)CrossRefGoogle Scholar
  242. Ryu J.H., Dua V., Pistikopoulos E.N.: A bilevel programming framework for enterprise-wide process networks under uncertainty. Comput. Chem. Eng. 28(6–7), 1121–1129 (2004)CrossRefGoogle Scholar
  243. Sahinidis N.V., Tawarmalani M.: Applications of global optimization to process and molecular design. Comput. Chem. Eng. 24, 2157–2169 (2000)CrossRefGoogle Scholar
  244. Sahinidis N.V., Tawarmalani M., Yu M.: Design of alternative refrigerants via global optimization. AIChE J. 49(7), 1761 (2003)CrossRefGoogle Scholar
  245. Sawaya N.W., Grossmann I.E.: A cutting plane method for solving linear generalized disjunctive programming problems. Comput. Chem. Eng. 29(9), 1891–1913 (2005)CrossRefGoogle Scholar
  246. Sawaya N.W., Grossmann I.E.: Computational implementation of non-linear convex hull reformulation. Comput. Chem. Eng. 31(7), 856–866 (2007)CrossRefGoogle Scholar
  247. Schafroth H.D., Floudas C.A.: Predicting peptide binding to MHC pockets via molecular modeling, implicit solvation, and global optimization. Proteins: Struct. Funct. Bioinform. 54, 534–556 (2004)CrossRefGoogle Scholar
  248. Schichl H.: Global optimization in the COCONUT project. In: Numerical Software with Results Verification, Lecture Notes in Computer Science 2991, pp.243–249. Springer (2004)Google Scholar
  249. Scurto A.M., Xu G., Brennecke J.F., Stadtherr M.A.: Phase behavior and reliable computation of high-pressure solid-fluid equilibrium with cosolvents. Ind. Eng. Chem. Res. 42(25), 6464–6475 (2003)CrossRefGoogle Scholar
  250. Shcherbina, O., Neumaier, A., Sam-Haroud, D., Vu, X.H., Nguyen, T.V.: Benchmarking global optimization and constraint satisfaction codes. In: Global Optimization and Constraint Satisfaction, Lecture Notes in Computer Science 2861, pp. 211–222. Springer (2003)Google Scholar
  251. Shectman J.P., Sahinidis N.V.: A finite algorithm for global optimization of separable concave functions. J. Glob. Optim. 12, 1–36 (1998)CrossRefGoogle Scholar
  252. Shen P.P.: Linearization method of global optimization for generalized geometric programming. Appl. Math. Comput. 162, 353–370 (2005)CrossRefGoogle Scholar
  253. Shen P.P., Yuan G.X.: Global optimization for the sum of generalized polynomial fractional functions. Math. Methods Oper. Res. 65(3), 445–459 (2007)CrossRefGoogle Scholar
  254. Sherali H.D.: Global optimization of nonconvex polynomial programming problems having rational exponents. J. Glob. Optim. 12(3), 267–283 (1998)CrossRefGoogle Scholar
  255. Sherali, H.D., Adams, W.P.: A Reformulation-Linearization Technique for solving Discrete and Coninuous Nonconvex Problems. Nonconvex Optimization and its Applications. Kluwer Academic Publishers (1999)Google Scholar
  256. Sherali H.D., Desai J.: A global optimization RLT-based approach for solving the hard clustering problem. J. Glob. Optim. 32(2), 281–306 (2005a)CrossRefGoogle Scholar
  257. Sherali H.D., Desai J.: A global optimization RLT-based approach for solving the fuzzy clustering problem. J. Glob. Optim. 33(4), 597–615 (2005b)CrossRefGoogle Scholar
  258. Sherali H.D., Fraticelli B.M.P.: Enhancing RLT relaxations via a new class of semidefinite cuts. J. Glob. Optim. 22(1–4), 233–261 (2002)CrossRefGoogle Scholar
  259. Sherali H.D., Ganesan V.: A pseudo-global optimization approach with application to the design of conteinerships. J. Glob. Optim. 26(4), 335–360 (2003)CrossRefGoogle Scholar
  260. Sherali H.D., Wang H.J.: Global optimization of nonconvex factorable programming problems. Math. Program. 89(3), 459–478 (2001)CrossRefGoogle Scholar
  261. Sherali H.D., Adams W.P., Driscoll P.J.: Exploiting special structures in constructing a hierarchy of relaxations for 0-1 mixed integer problems. Oper. Res. 46(3), 396–405 (1998)CrossRefGoogle Scholar
  262. Sherali H.D., Smith J.C., Adams W.P.: Reduced first-level representations via the reformulation-linearization technique: Results, counterexamples, and computations. Discrete Appl. Math. 101(1–3), 247–267 (2000)CrossRefGoogle Scholar
  263. Sherali H.D., Subramanian S., Loganathan G.V.: Effective relaxations and partitioning schemes for solving water distribution network design problems to global optimality. J. Glob. Optim. 19(1), 1–26 (2001)CrossRefGoogle Scholar
  264. Sherali H.D., Al-Loughani I., Subramani S.: Global optimization procedures for the capacitated euclidean and l(p) distance multifacility location-allocation problems. Oper. Res. 50(3), 433–448 (2002)CrossRefGoogle Scholar
  265. Sherali H.D., Lee Y., Kim Y.: Partial convexification cuts for 0-1 mixed-integer programs. Eur. J. Oper. Res. 165(3), 625–648 (2005)CrossRefGoogle Scholar
  266. Singer, A.B., Barton, P.I.: Global solution of optimization problems with dynamic systems embedded. In: Floudas, C.A., Pardalos, P.M. (eds.) Frontiers in Global Optimization, pp. 477–498. Kluwer Academic Publishers (2003)Google Scholar
  267. Singer A.B., Barton P.I.: Global solution of optimization problems with parameter-embedded linear dynamic systems. J. Optim. Theory Appl. 121(3), 613–646 (2004)CrossRefGoogle Scholar
  268. Singer A.B., Barton P.I.: Global optimization with nonlinear ordinary differential equations. J. Glob. Optim. 34(2), 159–190 (2006)CrossRefGoogle Scholar
  269. Singer A.B., Taylor J.W., Barton P.I., Green W.H.: Global dynamic optimization for parameter estimation in chemical kinetics. J. Phys. Chem. A 110(3), 971–976 (2006)CrossRefGoogle Scholar
  270. Sinha M., Achenie L.E.K., Ostrovsky G.V.: Environmentaly benign solvent design by global optimization. Comput. Chem. Eng. 23, 1381–1394 (1999)CrossRefGoogle Scholar
  271. Sinha M., Achenie L.E.K., Gani R.: Blanket wash solvent blent design using interval analysis. Ind. Eng. Chem. Res. 42, 516–527 (2003)CrossRefGoogle Scholar
  272. Solodov M.V.: A bundle method for a class of bilevel nonsmooth convex minimization problems. SIAM J. Optim. 18(1), 242–259 (2007)CrossRefGoogle Scholar
  273. Srinivas M., Rangaiah G.P.: Implementation and evaluation of random tunneling algorithm for chemical engineering applications. Comput. Chem. Eng. 30(9), 1400–1415 (2006)CrossRefGoogle Scholar
  274. Srinivas M., Rangaiah G.P.: Differential evolution with tabu list for global optimization and its application to phase equilibrium and parameter estimation problems. Ind. Eng. Chem. Res. 46(10), 3410–3421 (2007)CrossRefGoogle Scholar
  275. Stein O., Oldenburg J., Marquardt W.: Continuous reformulations of discrete-continuous optimization problems. Comput. Chem. Eng. 28(10), 1951–1966 (2004)CrossRefGoogle Scholar
  276. Storn R., Price K.: Differential evolution – a simple and efficient heuristic for global optimization over continuous spaces. J. Glob. Optim. 11(4), 341–359 (1997)CrossRefGoogle Scholar
  277. Strongin, R.G., Sergeyev, Y.D.: Global Optimization with Non-Convex Constraints – Sequential and Parallel Algorithms. Nonconvex Optimization and Its Applications. Kluwer Academic Publishers (2000)Google Scholar
  278. Sun X.L., Li D., McKinnon K.I.M.: On saddle points of augmented Lagrangians for constrained nonconvex optimization. SIAM J. Optim. 15(4), 1128–1146 (2005)CrossRefGoogle Scholar
  279. Tan M.P., Broach J.R., Floudas C.A.: A novel clustering approach and prediction of optimal number of clusters: global optimum search with enhanced positioning. J. Glob. Optim. 39, 323–346 (2007a)CrossRefGoogle Scholar
  280. Tan M.P., Broach J.R., Floudas C.A.: Evaluation of normalization and pre-clustering issues in a novel clustering approach: global optimum search with enhanced positioning. J. Bioinform. Comput. Biol. 5(4), 875–893 (2007b)CrossRefGoogle Scholar
  281. Tardella, F.: On the existence of polyhedral convex envelopes. In: Floudas, C.A., Pardalos, P.M. (eds.) Frontiers in Global Optimization, pp. 563–573. Kluwer Academic Publishers (2003)Google Scholar
  282. Tardella F.: Existence and sum decomposition of vertex polyhedral envelopes. Optim. Lett. 2(3), 363–375 (2008)CrossRefGoogle Scholar
  283. Tawarmalani M., Sahinidis N.V.: Semidefinite relaxations of fractional programs via novel convexification techniques. J. Glob. Optim. 20, 137–158 (2001)CrossRefGoogle Scholar
  284. Tawarmalani, M., Sahinidis, N.V.: Convexification and Global Optimization in Continuous and Mixed-Integer Nonlinear Programming: Theory, Algorithms, Software, and Applications. Nonconvex Optimization and its Applications. Kluwer Academic Publishers (2002a)Google Scholar
  285. Tawarmalani M., Sahinidis N.V.: Convex extensions and envelopes of lower semi-continuous functions. Math. Program. 93, 247–263 (2002b)CrossRefGoogle Scholar
  286. Tawarmalani M., Sahinidis N.V.: Global optimization of mixed-integer nonlinear programs: a theoretical and computational study. Math. Program. 99(3), 563–591 (2004)CrossRefGoogle Scholar
  287. Tawarmalani M., Sahinidis N.V.: A polyhedral branch-and-cut approach to global optimization. Math. Program. 103(2), 225–249 (2005)CrossRefGoogle Scholar
  288. Tawarmalani M., Ahmed S., Sahinidis N.V.: Product disaggregation in global optimization and relaxations of rational programs. J. Glob. Optim. 3, 281–303 (2002a)Google Scholar
  289. Tawarmalani M., Ahmed S., Sahinidis N.V.: Global optimization of 0-1 hyperbolic programs. J. Glob. Optim. 24, 385–416 (2002b)CrossRefGoogle Scholar
  290. Tessier S.R., Brennecke J.F., Stadtherr M.A.: Reliable phase stability analysis for excess Gibbs energy models. Chem. Eng. Sci. 55, 1785 (2000)CrossRefGoogle Scholar
  291. Törn, A., Zilinskas J.: Models and Algorithms for Global Optimization. Optimization and Its Applications. Springer (2007)Google Scholar
  292. Tsai J.F.: Global optimization of nonlinear fractional programming problems in engineering design. Eng. Optim. 37(4), 399–409 (2005)CrossRefGoogle Scholar
  293. Tsai J.F., Lin M.H.: An optimization approach for solving signomial discrete programming problems with free variables. Comput. Chem. Eng. 30(8), 1256–1263 (2006)CrossRefGoogle Scholar
  294. Tsai J.F., Lin M.H.: Finding all solutions of systems of nonlinear equations with free variables. Eng. Optim. 39(6), 649–659 (2007)CrossRefGoogle Scholar
  295. Tsai J.F., Lin M.H., Hu Y.C.: On generalized geometric programming problems with non-positive variables. Eur. J. Oper. Res. 178(1), 10–19 (2007)CrossRefGoogle Scholar
  296. Tuy, H.: Convex Analysis and Global Optimization. Nonconvex Optimization and Its Applications. Kluwer Academic Publishers (1998)Google Scholar
  297. Tuy H., Trach P.T., Konno H.: Optimization of polynomial fractional functions. J. Glob. Optim. 29(1), 19–44 (2004)CrossRefGoogle Scholar
  298. Tuy H., Migdalas A., Hoai-Phuong N.T.: A novel approach to bilevel nonlinear programming. J. Glob. Optim. 38(4), 527–554 (2007)CrossRefGoogle Scholar
  299. Ulas S., Diwekar U.M., Stadtherr M.A.: Uncertainties in parameter estimation and optimal control in batch distillation. Comput. Chem. Eng. 29(8), 1805–1814 (2005)CrossRefGoogle Scholar
  300. Vaia A., Sahinidis N.V.: Simultaneous parameter estimation and model structure determination in FTIR spectroscopy by global MINLP optimization. Comput. Chem. Eng. 27, 763–779 (2003)CrossRefGoogle Scholar
  301. Van Antwerp J.G., Braatz R.A., Sahinidis N.V.: Globally optimal robust process control. J. Process Control 9, 375–383 (1999)CrossRefGoogle Scholar
  302. Vecchietti A., Grossmann I.E.: LOGMIP: a disjunctive 0-1 nonlinear optimizer for process systems models. Comput. Chem. Eng. 23, 555–565 (1999)CrossRefGoogle Scholar
  303. Vecchietti A., Lee S., Grossmann I.E.: Modeling of discrete/continuous optimization problems: characterization and formulation of disjunctions and their relaxations. Comput. Chem. Eng. 27(3), 433–448 (2003)CrossRefGoogle Scholar
  304. Wales D.J., Scheraga H.A.: Global optimization of clusters, crystals, and biomolecules. Science 285(5432), 1368–1372 (1999)CrossRefGoogle Scholar
  305. Wang Y.J., Achenie L.E.K.: A hybrid global optimization approach for solvent design. Comput. Chem. Eng. 26, 1415–1425 (2002a)CrossRefGoogle Scholar
  306. Wang Y.J., Achenie L.E.K.: Computer-aided solvent design for extractive fermentation. Fluid Phase Equilib. 201, 1–18 (2002b)CrossRefGoogle Scholar
  307. Wang Y.J., Liang Z.: A deterministic global optimization algorithm for generalized geometric programming. Appl. Math. Comput. 168, 722–737 (2005)CrossRefGoogle Scholar
  308. Wang Y.J., Shen P.P., Liang Z.: A branch-and-bound algorithm to globally solve the sum of several linear ratios. Appl. Math. Comput. 168(1), 89–101 (2005)CrossRefGoogle Scholar
  309. Westerberg K.M., Floudas C.A.: Locating all transition states and Studying the reaction pathways of potential energy surfaces. J. Chem. Phys. 110(18), 9259 (1999a)CrossRefGoogle Scholar
  310. Westerberg K.M., Floudas C.A.: Dynamics of peptide folding: transition states and reaction pathways of solvated and unsolvated tetra-alanine. J. Glob. Optim. 15, 261 (1999b)CrossRefGoogle Scholar
  311. Westerlund, T.: Some transformation techniques in global optimization. In: Liberti, L., Maculan, N. (eds.) Global Optimization: From Theory to Implementation, pp. 45–74. Springer (2006)Google Scholar
  312. Westerlund T., Skrifvars H., Harjunkoski I., Pörn R.: An extended cutting plane method for a class of non-convex MINLP problems. Comput. Chem. Eng. 22(3), 357–365 (1998)CrossRefGoogle Scholar
  313. Wu Z.Y., Bai F.S., Zhang L.S.: Convexification and concavification for a general class of global optimization problems. J. Glob. Optim. 31(1), 45–60 (2005a)CrossRefGoogle Scholar
  314. Wu Z.Y., Lee H.W.J., Yang X.M.: A class of convexification and concavification methods for non-monotone optimization problems. Optimization 54(6), 605–625 (2005b)CrossRefGoogle Scholar
  315. Wu Z.Y., Li D., Zhang L.S., Wang X.M.: Peeling off a nonconvex cover of an actual convex problem: hidden convexity. SIAM J. Optim. 18(2), 507–536 (2007)CrossRefGoogle Scholar
  316. Xu Z., Huang H.X., Pardalos P.M., Xu C.X.: Filled functions for unconstrained global optimization. J. Glob. Optim. 20(1), 49–65 (2001)CrossRefGoogle Scholar
  317. Xu G., Brennecke J.F., Stadtherr M.A.: Reliable computation of phase stability and equilibrium from the SAFT equation of state. Ind. Eng. Chem. Res. 41, 938 (2002)CrossRefGoogle Scholar
  318. Yamada Y., Hara S.: Global optimization for H-infinity control with constant diagonal scaling. IEEE Trans. Automatic Control 43, 191–203 (1998)CrossRefGoogle Scholar
  319. Yamamoto R., Konno H.: An efficient algorithm for solving convex-convex quadratic fractional programs. J. Optim. Theory Appl. 133(2), 241–255 (2007)CrossRefGoogle Scholar
  320. Yan L.X., Shen K., Hu S.H.: Solving mixed integer nonlinear programming problems with line-up competition algorithm. Comput. Chem. Eng. 28(12), 2647–2657 (2004)CrossRefGoogle Scholar
  321. Young C.T., Zheng Y., Yeh C.W., Jang S.S.: Information-guided genetic algorithm approach to the solution of MINLP problems. Ind. Eng. Chem. Res. 46(5), 1527–1537 (2007)CrossRefGoogle Scholar
  322. Zabinsky, Z.B.: Stochastic Adaptive Search for Global Optimization. Nonconvex Optimization and Its Applications. Kluwer Academic Publishers (2003)Google Scholar
  323. Zakovic S., Rustem B.: Semi-infinite programming and applications to minimax problems. Ann. Oper. Res. 124(1–4), 81–110 (2003)CrossRefGoogle Scholar
  324. Zamora J.M., Grossmann I.E.: A global MINLP optimization algorithm for the synthesis of heat exchanger networks with no stream splits. Comput. Chem. Eng. 22(3), 367–384 (1998a)CrossRefGoogle Scholar
  325. Zamora J.M., Grossmann I.E.: Continuous global optimization of structured process systems models. Comput. Chem. Eng. 22(12), 1749–1770 (1998b)CrossRefGoogle Scholar
  326. Zamora J.M., Grossmann I.E.: A branch and contract algorithm for problems with concave univariate, bilinear and linear fractional terms. J. Glob. Optim. 14, 217–219 (1999)CrossRefGoogle Scholar
  327. Zhigljavsky, A., Zilinskas, A.: Stochastic Global Optimization. Optimization and Its Applications. Springer (2007)Google Scholar
  328. Zhu W.X., Fu Q.X.: A sequential convexification method (SCM) for continuous global optimization. J. Glob. Optim. 26, 167–182 (2003)CrossRefGoogle Scholar
  329. Zhu Y., Inoue K.: Calculation of chemical and phase equilibrium based on stability analysis by QBB algorithm: application to NRTL equation. Chem. Eng. Sci. 56, 6915 (2001)CrossRefGoogle Scholar
  330. Zhu Y., Kuno T.: Global optimization of nonconvex MINLP by a hybrid branch-and-bound and revised generalized benders decomposition approach. Ind. Eng. Chem. Res. 42, 528–539 (2003)CrossRefGoogle Scholar
  331. Zhu Y., Kuno T.: A disjunctive cutting-plane-based branch-and-cut algorithm for 0-1 mixed-integer convex nonlinear programs. Ind. Eng. Chem. Res. 45(1), 187–196 (2006)CrossRefGoogle Scholar
  332. Zhu Y., Xu Z.: A reliable prediction of the global phase stability for liquid-liquid equilibrium through the simulated anneling algorithm: application to NRTL and UNIQUAC equations. Fluid Phase Equilib. 154, 55–69 (1999a)CrossRefGoogle Scholar
  333. Zhu Y., Xu Z.: Lipschitz optimization for phase stability analysis: application to Soave-Redlich-Kwong equation of state. Fluid Phase Equilib. 162, 19–29 (1999b)CrossRefGoogle Scholar
  334. Zhu Y., Xu Z.: A reliable method for liquid-liquid phase equilibrium calculation and global stability analysis. Comput. Chem. Eng. 176, 133–160 (1999c)CrossRefGoogle Scholar
  335. Zhu Y., Wen H., Xu Z.: Global stability analysis and phase equilibrium calculations at high pressures using the enhanced simulated anneling algorithm. Chem. Eng. Sci. 55, 3451 (2000)CrossRefGoogle Scholar
  336. Zilinskas J., Bogle I.D.L.: Evaluation ranges of functions using balanced random interval arithmetic. Informatica Lithuan 14(3), 403–416 (2003)Google Scholar
  337. Zlobec S.: On the Liu-FLoudas convexification of smooth programs. J. Glob. Optim. 32(3), 401–407 (2005)CrossRefGoogle Scholar
  338. Zlobec S.: Characterization of convexifiable functions. Optimization 55(3), 251–261 (2006)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC. 2008

Authors and Affiliations

  1. 1.Department of Chemical EngineeringPrinceton UniversityPrincetonUSA

Personalised recommendations