Advertisement

Journal of Global Optimization

, Volume 44, Issue 4, pp 461–479 | Cite as

A hybrid multiagent approach for global trajectory optimization

  • Massimiliano VasileEmail author
  • Marco Locatelli
Article

Abstract

In this paper we consider a global optimization method for space trajectory design problems. The method, which actually aims at finding not only the global minimizer but a whole set of low-lying local minimizers (corresponding to a set of different design options), is based on a domain decomposition technique where each subdomain is evaluated through a procedure based on the evolution of a population of agents. The method is applied to two space trajectory design problems and compared with existing deterministic and stochastic global optimization methods.

Keywords

Global optimization Space trajectory design Agent-based approach Domain decomposition 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Battin, R.H.: An Introduction to the Mathematics and Methods of Astrodynamics, revised edition (Aiaa Education Series). AIAA (American Institute of Aeronautics & Ast) revised edition (1999). ISBN-13: 978-1563473425Google Scholar
  2. 2.
    Dachwald, B.: Optimization of interplanetary solar sailcraft trajectories using evolutionary neurocontrol. J. Guid. Dyn. January/ February (2004)Google Scholar
  3. 3.
    Dam E.R., van Husslage B.G.M., den Hertog D., Melissen J.B.M.: Maximin Latin hypercube designs in two dimensions. Oper. Res. 55, 158–169 (2007)CrossRefGoogle Scholar
  4. 4.
    Chipperfield, A.J., Fleming, P.J., Pohlheim, H., Fonseca, C.M.: Genetic Algorithm Toolbox User’s Guide, ACSE Research Report No. 512, University of Sheffield (1994)Google Scholar
  5. 5.
    De Pascale P., Vasile M.: Preliminary design of low-thrust multiple gravity assist trajectories. J. Spacecr. Rockets 43(5), 1065–1076 (2006)CrossRefGoogle Scholar
  6. 6.
    Di Lizia, P., Radice, G.: Advanced global optimisation tools for mission analysis and design. European Space Agency, the Advanced Concepts Team, Ariadna Final Report 03-4101b (2004)Google Scholar
  7. 7.
    Elbeltagi E., Hegazy T., Grierson D.: Comparison among five evolutionary-based optimization algorithms. Adv. Eng. Informatics 19, 43–53 (2005)CrossRefGoogle Scholar
  8. 8.
    Gage P.J., Braun R.D., Kroo I.M.: Interplanetary trajectory optimisation using a genetic algorithm. J. Astronaut. Sci. 43(1), 59–75 (1995)Google Scholar
  9. 9.
    Gurfil P., Kasdin N.J.: Niching genetic algorithms-based characterization of geocentric orbits in the 3D elliptic restricted three-body problem. Comput. Methods Appl. Mech. Eng. 191(49–50), 5673–5696 (2002)Google Scholar
  10. 10.
    Hartmann J.W., Coverstone-Carrol V.L., Williams S.N.: Optimal interplanetary spacecraft trajectories via pareto genetic algorithm. J. Astronaut. Sci. 46(3), 267–282 (1998)Google Scholar
  11. 11.
    Horst R., Tuy H.: Global Optimization: Deterministic Approaches, 3rd edn. Springer Verlag, (1996)Google Scholar
  12. 12.
    Huyer W., Neumaier A.: Global optimization by multilevel coordinate search. J. Glob. Optim. 14, 331–355 (1999)CrossRefGoogle Scholar
  13. 13.
    Jones D.R.: A taxonomy of global optimization methods based on response surfaces. J. Glob. Optim. 21, 345–383 (2001)CrossRefGoogle Scholar
  14. 14.
    Labunsky, A.V., Papkov, O.V., Sukhanov, K.G.: Multiple Gravity Assist Interplanetary Trajectories. ESI Book Series (1998)Google Scholar
  15. 15.
    Myatt, D.R., Becerra, V.M., Nasuto, S.J., Bishop, J.M.: Advanced Global Optimization Tools for Mission Analysis and Design. Final Rept. ESA Ariadna ITT AO4532/18138/04/NL/MV,Call03/4101 (2004)Google Scholar
  16. 16.
    Perttunen C.D., Stuckman B.E.: Lipschitzian optimization without the Lipschitz constant. JOTA 79(1), 157–181 (1993)CrossRefGoogle Scholar
  17. 17.
    Price, K.V., Storn, R.M., Lampinen, J.A.: Differential Evolution: A Practical Approach to Global Optimization, 1st edn. Springer (2005). ISBN-13: 978-3540209508Google Scholar
  18. 18.
    Rauwolf G., Coverstone-Carroll V.: Near-optimal low-thrust orbit transfers generated by a genetic algorithm. J. Spacecr. Rockets 33(6), 859–862 (1996)CrossRefGoogle Scholar
  19. 19.
    Rogata, P., Di Sotto, E., Graziano, M., Graziani, F.: Guess Value for Interplanetary Transfer Design Through Genetic Algorithms. American Astronautical Society, AAS Paper 03-140 (2003)Google Scholar
  20. 20.
    Stephens C.P., Baritompa W.: Global optimization requires global information. J. Optm. Theory Appl. 96, 575–588 (1998)CrossRefGoogle Scholar
  21. 21.
    Storn R., Price K.: Differential evolution—a simple and efficient heuristic for global optimization over continuous spaces. J. Glob. Optim. 11(4), 341–359 (1997)CrossRefGoogle Scholar
  22. 22.
    Torn A., Zilinskas A.: Global Optimization. Springer, Berlin (1987)Google Scholar
  23. 23.
    Vasile, M.: Combining evolution programs and gradient methods for WSB transfer optimisation. In: Operational Research in Space & Air, vol. 79. Book Series in Applied Optimization Kluwer Academy Press (2003). ISBN 1-4020-1218-7Google Scholar

Copyright information

© Springer Science+Business Media, LLC. 2008

Authors and Affiliations

  1. 1.Department of Aerospace EngineeringUniversity of GlasgowGlasgowUK
  2. 2.Dipartimento di InformaticaUniversità di TorinoTorinoItaly

Personalised recommendations