Advertisement

Journal of Global Optimization

, Volume 43, Issue 2–3, pp 357–372 | Cite as

Branch and bound algorithm for multidimensional scaling with city-block metric

  • Antanas Žilinskas
  • Julius ŽilinskasEmail author
Article

Abstract

A two level global optimization algorithm for multidimensional scaling (MDS) with city-block metric is proposed. The piecewise quadratic structure of the objective function is employed. At the upper level a combinatorial global optimization problem is solved by means of branch and bound method, where an objective function is defined as the minimum of a quadratic programming problem. The later is solved at the lower level by a standard quadratic programming algorithm. The proposed algorithm has been applied for auxiliary and practical problems whose global optimization counterpart was of dimensionality up to 24.

Keywords

Multidimensional scaling City-block metric Branch and bound 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Arabie, P.: Was Euclid an unnecessarily sophisticated psychologist?. Psychometrika 56(4), 567–587 (1991)CrossRefGoogle Scholar
  2. 2.
    Borg, I., Groenen, P.: Modern Multidimensional Scaling, 2nd edn. Springer, New York (2005)Google Scholar
  3. 3.
    Brusco, M.J.: A simulated annealing heuristics for unidimensional and multidimensional (city-block) scaling of symmetric proximity matrices. J. Classif. 18(1), 3–33 (2001)Google Scholar
  4. 4.
    Brusco, M.J., Stahl, S.: Branch-and-Bound Applications in Combinatorial Data Analysis. Springer, New York (2005)Google Scholar
  5. 5.
    Brusco, M.J., Stahl, S.: Optimal least-squares unidimensional scaling: improved branch-and-bound procedures and comparison to dynamic programming. Psychometrika 70(2), 253–270 (2005)CrossRefGoogle Scholar
  6. 6.
    Cox, T., Cox, M.: Multidimensional Scaling. Chapman and Hall/CRC, Boca Raton (2001)Google Scholar
  7. 7.
    Defays, D.: A short note on a method of seriation. Br. J. Math. Stat. Psychol. 31, 49–53 (1978)Google Scholar
  8. 8.
    de Leeuw, J.: Differentiability of Kruskal’s stress at a local minimum. Psychometrika 49(1), 111–113 (1984)CrossRefGoogle Scholar
  9. 9.
    Green, P., Carmone, F., Smith, S.: Multidimensional Scaling: Concepts and Applications. Allyn and Bacon, Boston (1989)Google Scholar
  10. 10.
    Groenen, P.J.F., Mathar, R., Heiser, W.J.: The majorization approach to multidimensional scaling for Minkowski distances. J. Classif. 12(1), 3–19 (1995)CrossRefGoogle Scholar
  11. 11.
    Groenen, P.J.F., Heiser, W.J., Meulman, J.J.: City-block scaling: smoothing strategies for avoiding local minima. In: Balderjahn, I., Mathar, R., Schader, M.(eds) Classification, Data Analysis, and Data Highways, pp. 46–53. Springer, Heidelberg (1998)Google Scholar
  12. 12.
    Groenen, P.J.F., Heiser, W.J., Meulman, J.J.: Global optimization in least-squares multidimensional scaling by distance smoothing. J. Classif. 16(2), 225–254 (1999)CrossRefGoogle Scholar
  13. 13.
    Hubert, L., Arabie, P., Hesson-Mcinnis, M.: Multidimensional scaling in the city-block metric: a combinatorial approach. J. Classif. 9(2), 211–236 (1992)CrossRefGoogle Scholar
  14. 14.
    Hwa, J., Graham, R.M., Perez, D.M.: Identification of critical determinants of α1-adrenergic receptor subtype selective agonist binding. J. Biol. Chem. 270(39), 23189–23195 (1995)CrossRefGoogle Scholar
  15. 15.
    Ruuskanen, J.O., Laurila, J., Xhaard, H., Rantanen, V.-V., Vuoriluoto, K., Wurster, S., Marjamaki, A., Vainio, M., Johnson, M.S., Scheinin, M.: Conserved structural, pharmacological and functional properties among the three human and five zebrafish α2-adrenoceptors. Br. J. Pharmacol. 144(2), 165–177 (2005)CrossRefGoogle Scholar
  16. 16.
    Uhlén, S., Dambrova, M., Näsman, J., Schiöth, H.B., Gu, Y., Wikberg-Matsson, A., Wikberg, J.E.S.: [3H]RS79948-197 binding to human, rat, guinea pig and pig α2A-, α2B- and α2C-adrenoceptors, Comparison with MK. 912, RX821002, rauwolscine and yohimbine. Eur. J. Pharmacol. 343(1), 93–101 (1998)CrossRefGoogle Scholar
  17. 17.
    Žilinskas, J.: Multidimensional scaling in protein and pharmacological sciences. In: Bogle, I.D.L., Žilinskas, J.(eds) Computer Aided Methods in Optimal Design and Operations. Series on Computers and Operations Research, vol. 7, pp. 139–148. World Scientific, Singapore (2006)CrossRefGoogle Scholar
  18. 18.
    Žilinskas, J.: Reducing of search space of multidimensional scaling problems with data exposing symmetries. Inform. Technol. Control 36(4), 377–382 (2007)Google Scholar
  19. 19.
    Žilinskas, A., Žilinskas, J.: Parallel hybrid algorithm for global optimization of problems occurring in MDS-based visualization. Comput. Math. Appl. 52(1–2), 211–224 (2006)CrossRefGoogle Scholar
  20. 20.
    Žilinskas, A., Žilinskas, J.: Two level minimization in multidimensional scaling. J. Global Optim. 38(4), 581–596 (2007)CrossRefGoogle Scholar
  21. 21.
    Žilinskas, A., Žilinskas, J.: A hybrid method for multidimensional scaling using city-block distances. Math. Method. Oper. Res. accepted (2008)Google Scholar

Copyright information

© Springer Science+Business Media, LLC. 2008

Authors and Affiliations

  1. 1.Department of Mathematics and InformaticsVilnius UniversityVilniusLithuania
  2. 2.Vilnius Gediminas Technical UniversityVilniusLithuania

Personalised recommendations