Journal of Global Optimization

, Volume 42, Issue 1, pp 69–89 | Cite as

Tight convex underestimators for \({\mathcal{C}^2}\) -continuous problems: II. multivariate functions

  • Chrysanthos E. Gounaris
  • Christodoulos A. FloudasEmail author


In Part I (Gounaris, C.E., Floudas, C.A.: Tight convex understimators for \({\mathcal {C}^{2}}\)-continuous functions: I: Univariate functions. J. Global Optim. (2008). doi:  10.007/s10898-008-9287-9), we introduced a novel approach for the underestimation of univariate functions which was based on a piecewise application of the well-known αBB underestimator. The resulting underestimators were shown to be very tight and, in fact, can be driven to coincide with the convex envelopes themselves. An approximation by valid linear supports, resulting in piecewise linear underestimators was also presented. In this paper, we demonstrate how one can make use of the high quality results of the approach in the univariate case so as to extend its applicability to functions with a higher number of variables. This is achieved by proper projections of the multivariate αBB underestimators into select two-dimensional planes. Furthermore, since our method utilizes projections into lower-dimensional spaces, we explore ways to recover some of the information lost in this process. In particular, we apply our method after having transformed the original problem in an orthonormal fashion. This leads to the construction of even tighter underestimators, through the accumulation of additional valid linear cuts in the relaxation.


Global optimization Convex underestimation αBB Piecewise affine underestimators 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Achenie, L.K.E., Biegler, L.T.: A superstructure based approach to chemical reactor network synthesis. Comput. Chem. Eng. 14, 23–40 (1990)CrossRefGoogle Scholar
  2. Adjiman, C.S., Floudas, C.A.: Rigorous convex underestimators for general twice-differentiable problems. J. Global Optim. 9, 23–40 (1996)CrossRefGoogle Scholar
  3. Adjiman, C.S., Dallwig, S., Floudas, C.A., Neumaier, A.: A global optimization method, αBB, for general twice-differentiable constrained NLPs I Theoretical advances. Comput. Chem. Eng. 22, 1137–1158 (1998a)CrossRefGoogle Scholar
  4. Adjiman, C.S., Androulakis, I.P., Floudas, C.A.: A global optimization method, αBB, for general twice-differentiable constrained NLPs II. Implementation and computational results. Comput. Chem. Eng. 22, 1159–1179 (1998b)CrossRefGoogle Scholar
  5. Aggarwal, A., Floudas, C.A.: Synthesis of general separation sequences—nonsharp separations. Comput. Chem. Eng. 14, 631–653 (1990)CrossRefGoogle Scholar
  6. Akrotirianakis, I.G., Floudas, C.A.: A new class of improved convex underestimators for twice continuously differentiable constrained NLPs. J. Global Optim. 30, 367–390 (2004a)CrossRefGoogle Scholar
  7. Akrotirianakis, I.G., Floudas, C.A.: Computational experience with an new class of convex underestimators: box-constrained NLP problems. J. Global Optim. 29, 249–264 (2004b)CrossRefGoogle Scholar
  8. Ali, M.M., Khompatraporn, C., Zabinsky, Z.B.: A numerical evaluation of several stochastic algorithms on selected continuous global optimization test problems. J. Global Optim. 31, 635–672 (2005)CrossRefGoogle Scholar
  9. Al-Khayyal, F.A., Falk, J.E.: Jointly constrained biconvex programming. Math. Oper. Res. 8, 273–286 (1983)CrossRefGoogle Scholar
  10. Androulakis, I.P., Maranas, C.D., Floudas, C.A.: αBB: A global optimization method for general constrained nonconvex problems. J. Global Optim. 7, 337–363 (1995)CrossRefGoogle Scholar
  11. Caratzoulas, S., Floudas, C.A.: Trigonometric convex underestimator for the base functions in fourier space. J. Optim. Theory Appli. 124, 339–362 (2005)CrossRefGoogle Scholar
  12. Ciric, A.R., Floudas, C.A.: A retrofit approach of heat exchanger networks. Comp. Chem. Eng. 13, 703–715 (1989)CrossRefGoogle Scholar
  13. Esposito, W.R., Floudas, C.A.: Global optimization in parameter estimation of nonlinear algebraic models via the error-in-variables approach. Ind. Eng. Chem. Res. 35, 1841–1858 (1998)CrossRefGoogle Scholar
  14. Floudas, C.A.: Deterministic global optimization: Theory, Algorithms and Applications. Kluwer Academic Publishers (2000)Google Scholar
  15. Floudas, C.A., Pardalos, P.M.: Preface. J. Glob Optim. 7, 113 (1995)CrossRefGoogle Scholar
  16. Floudas, C.A., Pardalos P.M.: Frontiers in global optimization. Kluwer Academic Publishers (2003)Google Scholar
  17. Floudas, C.A.: Research challenges, opportunities and synergism in systems engineering and computational biology. AIChE J. 51, 1872–1884 (2005)CrossRefGoogle Scholar
  18. Floudas, C.A., Akrotirianakis, I.G., Caratzoulas, S., Meyer, C.A., Kallrath, J.: Global optimization in the 21st century: advances and challenges. Comp. Chem. Eng. 29, 1185–1202 (2005)CrossRefGoogle Scholar
  19. Floudas, C.A., Fung, H.K., McAllister, S.R., Monnigmann, M., Rajgaria, R.: Advances in protein structure prediction and de novo protein design: a review. Chem. Eng. Sci. 61, 966–988 (2006)CrossRefGoogle Scholar
  20. Floudas, C.A., Kreinovich, V.: Towards optimal techniques for solving global optimization problems: symmetry-based approach. In: Torn, A., Zilinskas, J. (ed.) Models and Algorithms for Global Optimization, pp. 21–42. Springer (2007a)Google Scholar
  21. Floudas, C.A., Kreinovich, V.: On the functional form of convex understimators for twice continuously differentiable functions. Optim. Lett. 1, 187–192 (2007b)CrossRefGoogle Scholar
  22. Ge, R.P., Qin, Y.F.: Globally convexized functions. Appl. Math Comput. 35, 131–158 (1990)CrossRefGoogle Scholar
  23. Gill, P.E., Murray, W., Saunders M.A., Wright, M.H.: User’s guide for NPSOL 5.0: a fortran package for nonlinear programming. Technical Report SOL 86–1 (1998)Google Scholar
  24. Gounaris, C.E., Floudas, C.A.: Tight convex underestimators for \({\mathcal{C}^2}\) -continuous functions: I. Univariate functions. J. Global Optim. (2008). doi: 10.1007/s10898-008-9287-9
  25. Gümüş, Z.H., Floudas, C.A.: Global optimization of nonlinear bilevel programming problems. J. Global Optim. 20, 1–31 (2001)CrossRefGoogle Scholar
  26. Harding, S.T., Maranas, C.D., McDonald, C.M., Floudas, C.A.: Locating all homogeneous azeotropes in multicomponent mixtures. Ind. Eng. Chem. Res. 36, 160–178 (1997)CrossRefGoogle Scholar
  27. Horst, R., Pardalos, P.M., Thoai N.V.: Introduction to Global Optimization (Second Edition). Kluwer Academic Publishers, (2000)Google Scholar
  28. Horst, R., Tuy, H.: Global Optimization: Deterministic Approaches, 3rd ed. Springer (2003)Google Scholar
  29. Kokossis, A.C., Floudas, C.A.: Optimization of complex reactor networks: I-isothermal operation. Chem. Eng. Sci. 43, 595–614 (1990)CrossRefGoogle Scholar
  30. Kokossis, A.C., Floudas, C.A.: Optimization of complex reactor networks: II-nonisothermal operation. Chem. Eng. Sci. 49, 1037–1051 (1994)CrossRefGoogle Scholar
  31. Liberti, L., Pantelides, C.C.: Convex envelopes of monomials of odd degree. J. Global Optim. 25, 157–168 (2003)CrossRefGoogle Scholar
  32. Maranas, C.D., Floudas, C.A.: Global minimum potential energy conformations of small molecules. J. Global Optim. 4, 135–170 (1994)CrossRefGoogle Scholar
  33. Maranas, C.D., Floudas, C.A.: Finding all solutions of nonlinearly constrained systems of equations. J. Global Optim. 7, 143–182 (1995)CrossRefGoogle Scholar
  34. Maranas, C.D., McDonald, C.M., Harding, S.T., Floudas, C.A.: Locating all azeotropes in homogeneous azeotropic systems. Comp. Chem. Eng. 20, S413–S418 (1996)CrossRefGoogle Scholar
  35. McCormick, G.P.: Computability of global solutions to factorable nonconvex programs: part I – convex underestimating problems. Mathem. Prog. 10, 147–175 (1976)CrossRefGoogle Scholar
  36. McDonald, C.M., Floudas, C.A.: Decomposition based and branch and bound global optimization approaches for the phase equilibrium problem. J. Gl. Optim. 5, 205–251 (1994)CrossRefGoogle Scholar
  37. McDonald, C.M., Floudas, C.A.: Global optimization for the phase and chemical equilibrium problem: application to the NRTL Equation. Comp. Chem. Eng. 19, 1111–1141 (1995)CrossRefGoogle Scholar
  38. McDonald, C.M., Floudas, C.A.: GLOPEQ: a new computational tool for the phase and chemical equilibrium problem. Comp. Chem. Eng. 21, 1–23 (1997)CrossRefGoogle Scholar
  39. Meyer, C.A., Floudas, C.A.: Trilinear monomials with positive or negative domains: facets of the convex and concave envelopes. In: Floudas, C.A., Pardalos, P.M., (eds.) Frontiers in Global Optimization. Kluwer Academic Publishers (2003)Google Scholar
  40. Meyer, C.A., Floudas, C.A.: Trilinear monomials with mixed sign domains: facets of the convex and concave envelopes. J. Global Optim. 29, 125–155 (2004)CrossRefGoogle Scholar
  41. Meyer, C.A., Floudas, C.A.: Convex envelopes for edge-concave functions. Math Prog. 103, 207–224 (2005)CrossRefGoogle Scholar
  42. Moré, J.J., Garbow, B.S., Hillstrom, K.E.: Testing unconstrained optimization software. ACM Trans. Math Software 7, 17–41 (1981)CrossRefGoogle Scholar
  43. Ryoo, H.S., Sahinidis, N.V.: Analysis of bounds for multilinear functions. J. Global Optim. 19, 403–424 (2001)CrossRefGoogle Scholar
  44. Sherali, H.D., Adams, W.P.: Reformulation-linearization techniques in discrete and continuous optimization. Kluwer Academic Publishers, (2002)Google Scholar
  45. Tardella, F.: On the existence of polyhedral convex envelopes. In: Floudas, C.A., Pardalos, P.M., (eds) Frontiers in Global Optimization. Kluwer Academic Publishers (2003)Google Scholar
  46. Tawarmalani, M., Sahinidis, N.V.: Semidefinite relaxations of fractional programs via novel convexification techniques. J. Global Optim. 20, 137–158 (2001)CrossRefGoogle Scholar
  47. Tawarmalani, M., Sahinidis, N.V.: Convexification and global optimization in continuous and mixed-integer nonlinear programming. Kluwer Academic Publishers (2002a)Google Scholar
  48. Tawarmalani, M., Sahinidis, N.V.: Convex extensions and envelopes of lower semi-continuous functions. Math. Prog. 93, 247–263 (2002b)CrossRefGoogle Scholar
  49. Yee, T.F., Grossmann, I.E.: Simultaneous-optimization models for heat integration. 2-heat exchanger network synthesis. Comp. Chem. Eng. 14, 1165–1184 (1990)CrossRefGoogle Scholar
  50. Yeomans, H., Grossmann, I.E.: A systematic modeling framework of superstructure optimization in process synthesis. Comp. Chem. Eng. 23, 709–731 (1999)CrossRefGoogle Scholar
  51. Zabinsky, Z.B.: Stochastic Adaptive Search for Global Optimization. Kluwer Academic Publishers (2003)Google Scholar

Copyright information

© Springer Science+Business Media, LLC. 2008

Authors and Affiliations

  • Chrysanthos E. Gounaris
    • 1
  • Christodoulos A. Floudas
    • 1
    Email author
  1. 1.Department of Chemical EngineeringPrinceton UniversityPrincetonUSA

Personalised recommendations