Journal of Global Optimization

, Volume 40, Issue 4, pp 719–738 | Cite as

Deterministic parallel global parameter estimation for a model of the budding yeast cell cycle

  • Thomas D. Panning
  • Layne T. Watson
  • Nicholas A. Allen
  • Katherine C. Chen
  • Clifford A. Shaffer
  • John J. Tyson
Article

Abstract

Two parallel deterministic direct search algorithms are combined to find improved parameters for a system of differential equations designed to simulate the cell cycle of budding yeast. Comparing the model simulation results to experimental data is difficult because most of the experimental data is qualitative rather than quantitative. An algorithm to convert simulation results to mutant phenotypes is presented. Vectors of the 143 parameters defining the differential equation model are rated by a discontinuous objective function. Parallel results on a 2200 processor supercomputer are presented for a global optimization algorithm, DIRECT, a local optimization algorithm, MADS, and a hybrid of the two.

Keywords

DIRECT (DIviding RECTangles) algorithm Direct search MADS (Mesh Adaptive Direct Search) algorithm Computational biology 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Allen N.A., Calzone L., Chen K.C., Ciliberto A., Ramakrishnan N., Shaffer C.A., Sible J.C., Tyson J.J., Vass M.T., Watson L.T. and Zwolak J.W. (2003). Modeling regulatory networks at Virginia Tech. OMICS 7: 285–299 CrossRefGoogle Scholar
  2. 2.
    Allen N.A., Chen K.C., Tyson J.J., Shaffer C.A. and Watson L.T. (2006). Computer evaluation of network dynamics models with application to cell cycle control in budding yeast. IEE Syst. Biol. 153: 13–21 CrossRefGoogle Scholar
  3. 3.
    Allen N.A., Shaffer C.A., Ramakrishnan N., Vass M.T. and Watson L.T. (2003). Improving the development process for eukaryotic cell cycle models with a modeling support environment. Simulation 79: 674–688 CrossRefGoogle Scholar
  4. 4.
    Audet C. and Dennis J.E. Jr. (2006). Mesh adaptive direct search algorithms for constrained optimization. SIAM J. Optim. 17: 188–217 CrossRefGoogle Scholar
  5. 5.
    Chen K.C., Calzone L., Csikasz-Nagy A., Cross F.R., Novak B. and Tyson J.J. (2004). Integrative analysis of cell cycle control in budding yeast. Mol. Biol. Cell 15: 3841–3862 CrossRefGoogle Scholar
  6. 6.
    Coope I.D. and Price C.J. (2000). Frame based methods for unconstrained optimization. J. Optim. Theory Appl 107: 261–274 CrossRefGoogle Scholar
  7. 7.
    He J., Sosonkina M., Shaffer C.A., Tyson J.J., Watson L.T. and Zwolak J.W. (2004). A hierarchical parallel scheme for a global search algorithm. In: Meyer, J. (eds) Proceedings of High Performance Computing Symposium 2004, pp 43–50. Society for Modeling and Simulation International, San Diego, CA Google Scholar
  8. 8.
    He, J., Sosonkina, M., Shaffer, C.A., Tyson, J.J., Watson, L.T., Zwolak, J.W.: A hierarchical parallel scheme for global parameter estimation in systems biology. In: Proceedings of the 18th International Parallel & Distributed Processing Symposium, 9 p, CD-ROM, Los Alamitos, CA, IEEE Computer Soc. (2004)Google Scholar
  9. 9.
    He J., Sosonkina M., Watson L.T., Verstak A. and Zwolak J.W. (2005). Data-distributed parallelism with dynamic task allocation for a global search algorithm. In: Parashar, M. and Watson, L. (eds) Proceedings of High Performance Computing Symposium 2005, pp 164–172. Society for Modeling and Simulation International, San Diego, CA Google Scholar
  10. 10.
    He J., Watson L.T., Ramakrishnan N., Shaffer C.A., Verstak A., Jiang J., Bae K. and Tranter W.H. (2002). Dynamic data structures for a direct search algorithm. Comput. Optim. Appl. 23: 5–25 CrossRefGoogle Scholar
  11. 11.
    Jones D.R., Perttunen C.D. and Stuckman B.E. (1993). Lipschitzian optimization without the Lipschitz constant. J. Optim. Theory Appl. 79: 157–181 CrossRefGoogle Scholar
  12. 12.
    Murray A. and Hunt T. (1993). The Cell Cycle: an Introduction. Oxford University Press, New York Google Scholar
  13. 13.
    Nasmyth K. (1996). At the heart of the budding yeast cell cycle. Trends Genet. 12: 405–412 CrossRefGoogle Scholar
  14. 14.
    Nurse P. (2000). A long twentieth century of the cell cycle and beyond. Cell 100: 71–78 CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC. 2008

Authors and Affiliations

  • Thomas D. Panning
    • 1
  • Layne T. Watson
    • 2
  • Nicholas A. Allen
    • 1
  • Katherine C. Chen
    • 1
  • Clifford A. Shaffer
    • 1
  • John J. Tyson
    • 1
  1. 1.Departments of Computer Science and Biological SciencesVirginia Polytechnic Institute and State UniversityBlacksburgUSA
  2. 2.Departments of Computer Science and MathematicsVirginia Polytechnic Institute and State UniversityBlacksburgUSA

Personalised recommendations