Journal of Global Optimization

, Volume 43, Issue 2–3, pp 263–276 | Cite as

A mixed-integer optimization framework for the synthesis and analysis of regulatory networks

  • Panagiota T. Foteinou
  • Eric Yang
  • Georges K. Saharidis
  • Marianthi G. Ierapetritou
  • Ioannis P. Androulakis
Article

Abstract

Motivation: A novel mixed-integer optimization framework is proposed for the design and analysis of regulatory networks. The model combines gene expression data and prior biological knowledge regarding the potential for regulatory interactions between genes and their corresponding transcription factors. The formalism provides significant advantages over available modeling methodologies in that the complexity of the regulatory network can be explicitly taken into account, multiple alternative structures can be systematically generated and finally robust and biological significant regulators can be rigorously identified. The original non-convex mixed integer reformulation is appropriately linearized and the resulting MILP is effectively optimized using standard solvers. The versatility is demonstrated using gene expression and binding data from an E. coli case study during transition from glucose to acetate as the sole carbon source.

Keywords

Bioinformatics Mixed integer linear optimization Gene regulation 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Alter, O., Golub, G.H.: Integrative analysis of genome-scale data by using pseudoinverse projection predicts novel correlation between DNA replication and RNA transcription. Proc. Natl. Acad. Sci. U.S.A. 101(47), 16577–16582 (2004)CrossRefGoogle Scholar
  2. Biegler, L.T., Grossmann, I.E. et al.: Systematic Methods of Chemical Process Design. Prentice Hall (1997)Google Scholar
  3. Boulesteix, A.L., Strimmer, K.: Predicting transcription factor activities from combined analysis of microarray and ChIP data: a partial least squares approach. Theor. Biol. Med. Model. 2, 23 (2005)CrossRefGoogle Scholar
  4. Brooke, A., Kendrick, D. et al.: GAMS A user’s guide. GAMS Development Corporation (2004)Google Scholar
  5. Bussemaker, H.J., Li, H. et al.: Regulatory element detection using correlation with expression. Nat. Genet. 27(2), 167–171 (2001)CrossRefGoogle Scholar
  6. Calvo, J.M., Matthews, R.G.: The leucine-responsive regulatory protein, a global regulator of metabolism in Escherichia coli. Microbiol. Rev. 58(3), 466–490 (1994)Google Scholar
  7. Chapuy-Regaud, S., Ogunniyi, A.D. et al.: RegR, a global LacI/GalR family regulator, modulates virulence and competence in Streptococcus pneumoniae. Infect. Immun. 71(5), 2615–2625 (2003)CrossRefGoogle Scholar
  8. Chen, C.C., Wu, H.Y.: LeuO protein delimits the transcriptionally active and repressive domains on the bacterial chromosome. J. Biol. Chem. 280(15), 15111–15121 (2005)CrossRefGoogle Scholar
  9. Chen, K.C., Wang, T.Y. et al.: A stochastic differential equation model for quantifying transcriptional regulatory network in Saccharomyces cerevisiae. Bioinformatics 21(12), 2883–2890 (2005)CrossRefGoogle Scholar
  10. Covert, M.W., Knight, E.M. et al.: Integrating high-throughput and computational data elucidates bacterial networks. Nature 429(6987), 92–96 (2004)CrossRefGoogle Scholar
  11. DiRusso, C.C., Heimert, T.L. et al.: Characterization of FadR, a global transcriptional regulator of fatty acid metabolism in Escherichia coli. Interaction with the fadB promoter is prevented by long chain fatty acyl coenzyme A. J. Biol. Chem. 267(12), 8685–8691 (1992)Google Scholar
  12. Drazinic, C.M., Smerage, J.B. et al.: Activation mechanism of the multifunctional transcription factor repressor-activator protein 1 (Rap1p). Mol. Cell. Biol. 16(6), 3187–3196 (1996)Google Scholar
  13. Gao, F., Foat, B.C. et al.: Defining transcriptional networks through integrative modeling of mRNA expression and transcription factor binding data. BMC Bioinformatics 5, 31 (2004)CrossRefGoogle Scholar
  14. Gervais, F.G., Phoenix, P. et al.: The rcsB gene, a positive regulator of colanic acid biosynthesis in Escherichia coli, is also an activator of ftsZ expression. J. Bacteriol. 174(12), 3964–3971 (1992)Google Scholar
  15. Harbison, C.T., Gordon, D.B. et al.: Transcriptional regulatory code of a eukaryotic genome. Nature 431(7004), 99–104 (2004)CrossRefGoogle Scholar
  16. Iyer, V.R., Horak, C.E. et al.: Genomic binding sites of the yeast cell-cycle transcription factors SBF and MBF. Nature 409(6819), 533–538 (2001)CrossRefGoogle Scholar
  17. Kakeda, M., Ueguchi, C. et al.: An Escherichia coli curved DNA-binding protein whose expression is affected by the stationary phase-specific sigma factor sigma S. Mol. Gen. Genet. 248(5), 629–634 (1995)CrossRefGoogle Scholar
  18. Kao, K.C., Yang, Y.L. et al.: Transcriptome-based determination of multiple transcription regulator activities in Escherichia coli by using network component analysis. Proc. Natl. Acad. Sci. U.S.A. 101(2), 641–646 (2004)CrossRefGoogle Scholar
  19. Kao, K.C., Tran, L.M. et al.: A global regulatory role of gluconeogenic genes in Escherichia coli revealed by transcriptome network analysis. J. Biol. Chem. 280(43), 36079–36087 (2005)CrossRefGoogle Scholar
  20. Kato, M., Hata, N. et al.: Identifying combinatorial regulation of transcription factors and binding motifs. Genome Biol. 5(8), R56 (2004)CrossRefGoogle Scholar
  21. Landini, P., Hajec, L.I. et al.: Structure and transcriptional regulation of the Escherichia coli adaptive response gene aidB. J. Bacteriol. 176(21), 6583–6589 (1994)Google Scholar
  22. Lawley, B., Pittard, A.J.: Regulation of aroL expression by TyrR protein and Trp repressor in Escherichia coli K-12. J. Bacteriol. 176(22), 6921–6930 (1994)Google Scholar
  23. Lawley, B., Fujita, N. et al.: The TyrR protein of Escherichia coli is a class I transcription activator. J. Bacteriol. 177(1), 238–241 (1995)Google Scholar
  24. Lee, T.I., Rinaldi, N.J. et al.: Transcriptional regulatory networks in Saccharomyces cerevisiae. Science 298(5594), 799–804 (2002)CrossRefGoogle Scholar
  25. Maxson, M.E., Darwin, A.J.: Multiple promoters control expression of the Yersinia enterocolitica phage-shock-protein A (pspA) operon. Microbiology 152(Pt 4), 1001–1010 (2006)CrossRefGoogle Scholar
  26. Ng, A., Bursteinas, B. et al.: pSTIING: a ‘systems’ approach towards integrating signalling pathways, interaction and transcriptional regulatory networks in inflammation and cancer. Nucleic Acids Res. 34(Database issue), D527–D534 (2006)CrossRefGoogle Scholar
  27. Oh, M.K., Rohlin, L. et al.: Global expression profiling of acetate-grown Escherichia coli. J. Biol. Chem. 277(15), 13175–13183 (2002)CrossRefGoogle Scholar
  28. Pournara, I., Wernisch, L.: Factor analysis for gene regulatory networks and transcription factor activity profiles. BMC Bioinformatics 8, 61 (2007)CrossRefGoogle Scholar
  29. Rolfes, R.J., Zalkin, H.: Escherichia coli gene purR encoding a repressor protein for purine nucleotide synthesis. Cloning, nucleotide sequence, and interaction with the purF operator. J. Biol. Chem. 263(36), 19653–19661 (1988)Google Scholar
  30. Salgado, H., Santos-Zavaleta, A. et al.: RegulonDB (version 3.2): transcriptional regulation and operon organization in Escherichia coli K-12. Nucleic Acids Res. 29(1), 72–74 (2001)CrossRefGoogle Scholar
  31. Savageau, M.A.: Biochemical Systems Analysis: A Study of Function and Design in Molecular Biology. Addison-Weslet, Reading (1976)Google Scholar
  32. Stormo, G.D., Fields, D.S.: Specificity, free energy and information content in protein-DNA interactions. Trends Biochem. Sci. 23(3), 109–113 (1998)CrossRefGoogle Scholar
  33. Sun, N., Carroll, R.J. et al.: Bayesian error analysis model for reconstructing transcriptional regulatory networks. Proc. Natl. Acad. Sci. U.S.A. 103(21), 7988–7993 (2006)CrossRefGoogle Scholar
  34. Thomas, R., Mehrotra, S. et al.: A model-based optimization framework for the inference on gene regulatory networks from DNA array data. Bioinformatics 20(17), 3221–3235 (2004)CrossRefGoogle Scholar
  35. Tran, L.M., Brynildsen, M.P. et al.: gNCA: A framework for determining transcription factor activity based on transcriptome: identifiability and numerical implementation. Metab. Eng. 7(2), 128–141 (2005)CrossRefGoogle Scholar
  36. van Steensel, B., Delrow, J. et al.: Genomewide analysis of Drosophila GAGA factor target genes reveals context-dependent DNA binding. Proc. Natl. Acad. Sci. U.S.A. 100(5), 2580–2585 (2003)CrossRefGoogle Scholar
  37. Wagner, A., Wright, J.: Alternative routes and mutational robustness in complex regulatory networks. Biosystems 88(1–2), 163–172 (2007)CrossRefGoogle Scholar
  38. Wang, X.D., de Boer, P.A. et al.: A factor that positively regulates cell division by activating transcription of the major cluster of essential cell division genes of Escherichia coli. Embo. J. 10(11), 3363–3372 (1991)Google Scholar
  39. Wang, W., Cherry, J.M. et al.: A systematic approach to reconstructing transcription networks in Saccharomyces cerevisiae. Proc. Natl. Acad. Sci. U.S.A. 99(26), 16893–16898 (2002)CrossRefGoogle Scholar
  40. Yeung, M.K., Tegner, J. et al.: Reverse engineering gene networks using singular value decomposition and robust regression. Proc. Natl. Acad. Sci. U.S.A. 99(9), 6163–6168 (2002)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC. 2007

Authors and Affiliations

  • Panagiota T. Foteinou
    • 1
  • Eric Yang
    • 1
  • Georges K. Saharidis
    • 2
  • Marianthi G. Ierapetritou
    • 2
  • Ioannis P. Androulakis
    • 1
    • 2
  1. 1.Department of Biomedical EngineeringRutgers UniversityPiscatawayUSA
  2. 2.Department of Chemical and Biochemical EngineeringRutgers UniversityPiscatawayUSA

Personalised recommendations