Advertisement

Journal of Global Optimization

, Volume 41, Issue 4, pp 539–558 | Cite as

Various kinds of semicontinuity and the solution sets of parametric multivalued symmetric vector quasiequilibrium problems

  • Lam Quoc Anh
  • Phan Quoc Khanh
Article

Abstract

We introduce some definitions related to semicontinuity of multivalued mappings and discuss various kinds of semicontinuity-related properties. Sufficient conditions for the solution sets of parametric multivalued symmetric vector quasiequilibrium problems to have these properties are established. Comparisons of the solution sets of our two problems are also provided. As an example of applications of our main results, the mentioned semicontinuity-related properties of the solution sets to a lower and upper bounded quasiequilibrium problem are obtained as consequences.

Keywords

U-lower (or upper)-level closednesss U-Hausdorff-lower (or upper)- level closedness U-lower (or upper)-semicontinuity U-Hausdorff-lower (or upper)-semicontinuity (Hausdorff) lower or upper semicontinuity U-inclusion property Symmetric quasiequilibrium problems Lower and upper bounded quasiequilibrium problems Solution sets 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Ait Mansour, M., Riahi, H.: Sensitivity analysis for abstract equilibrium problems. J. Math. Anal. Appl. 306, 684–691 (2005)CrossRefGoogle Scholar
  2. Anh, L.Q., Khanh, P.Q.: Semicontinuity of the solution set of parametric multivalued vector quasiequilibrium problems. J. Math. Anal. Appl. 294, 699–711 (2004)CrossRefGoogle Scholar
  3. Anh, L.Q., Khanh, P.Q.: On the Hölder continuity of solutions to parametric multivalued vector equilibrium problems. J. Math. Anal. Appl. 321, 308–315 (2006)CrossRefGoogle Scholar
  4. Anh, L.Q., Khanh, P.Q.: On the stability of the solution sets of general multivalued vector quasiequilibrium problems. J. Optim. Theory Appl. 135, 271–284 (2007a)CrossRefGoogle Scholar
  5. Anh, L.Q., Khanh, P.Q.: Uniqueness and Hölder continuity of the solution to multivalued equilibrium problems in metric spaces. J. Glob. Optim. 37, 449–465 (2007b)CrossRefGoogle Scholar
  6. Anh, L.Q., Khanh, P.Q.: Existence conditions in symmetric multivalued vector quasiequilibrium problems. Control Cyber. 36, 519–530 (2007c)Google Scholar
  7. Anh, L.Q., Khanh, P.Q.: Semicontinuity of the approximate solution sets of multivalued quasiequilibrium problems. (2007c)Google Scholar
  8. Ansari, Q.H., Schaible, S., Yao, J.C.: The system of vector equilibrium problems and its applications. J. Optim. Theory Appl. 107, 547–557 (2000)CrossRefGoogle Scholar
  9. Ansari, Q.H., Schaible, S., Yao, J.C.: The system of generalized vector equilibrium problems with applications. J. Glob. Optim. 22, 3–16 (2002)CrossRefGoogle Scholar
  10. Bianchi, M., Pini, R.: A note on stability for parametric equilibrium problems. Oper. Res. Lett. 31, 445–450 (2003)CrossRefGoogle Scholar
  11. Bianchi, M., Pini, R.: Sensitivity for parametric vector equilibria. Optimization 55, 221–230 (2006)CrossRefGoogle Scholar
  12. Bianchi, M., Schaible, S.: Equilibrium problems under generalized convexity and generalized monotonicity. J. Glob. Optim. 30, 121–134 (2004)CrossRefGoogle Scholar
  13. Blum, E., Oettli, W.: From optimization and variational inequalities to equilibrium problems. Math. Stud. 63, 123–145 (1994)Google Scholar
  14. Farajzadeh, A.P.: On the symmetric vector quasiequilibrium problems. J. Math. Anal. Appl. 322, 1099–1110 (2006)CrossRefGoogle Scholar
  15. Fu, J.Y.: Symmetric vector quasiequilibrium problems. J. Math. Anal. Appl. 285, 708–713 (2003)CrossRefGoogle Scholar
  16. Hai, N.X., Khanh, P.Q.: Existence of solutions to general quasiequilibrium problems and applications. J. Optim. Theory Appl. 133, 317–327 (2007a)CrossRefGoogle Scholar
  17. Hai, N.X., Khanh, P.Q.: The solution existence of general variational inclusion problems. J. Math. Anal. Appl. 328, 1268–1277 (2007b)CrossRefGoogle Scholar
  18. Hai, N.X., Khanh, P.Q.: Systems of set-valued quasivariational inclusion problems. J. Optim. Theory Appl. 135, 55–67 (2007c)CrossRefGoogle Scholar
  19. Hai, N.X., Khanh, P.Q.: Systems of multivalued quasiequilibrium problems. Adv. Nonlinear Var. Inequal. 9, 97–108 (2006)Google Scholar
  20. Haung, N.J., Li, J., Thompson, H.B.: Stability for parametric implicit vector equilibrium problems. Math. Comput. Model. 43, 1267–1274 (2006)CrossRefGoogle Scholar
  21. Hu, S., Papageorgiou, N.S.: Handbook of Multivalued Analysis. Kluwer, London (1997)Google Scholar
  22. Iusem, A.N., Sosa, W.: New existence results for equilibrium problems. Nonlinear Anal. 52, 621–635 (2003)CrossRefGoogle Scholar
  23. Lin, L.J.: Systems of generalized vector quasiequilibrium problems with applications to fixed point theorems for a family of nonexpansive multivalued mappings. J. Glob. Optim. 34, 15–32 (2006)CrossRefGoogle Scholar
  24. Luc, D.T., Tan, N.X.: Existence conditions in variational inclusions with constraints. Optimization 53, 505–515 (2004)CrossRefGoogle Scholar
  25. Noor, M.A., Oettli, W.: On general nonlinear complementarity problems and quasiequilibria. Le Matematiche 49, 313–331 (1994)Google Scholar
  26. Tan, N.X.: On the existence of solutions of quasivariational inclusion problems. J. Optim. Theory Appl. 123, 619–638 (2004)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC. 2007

Authors and Affiliations

  1. 1.Department of Mathematics, Teacher CollegeCantho UniversityCanthoVietnam
  2. 2.Department of MathematicsInternational University of Hochiminh CityHochiminh CityVietnam

Personalised recommendations