Advertisement

Journal of Global Optimization

, Volume 41, Issue 4, pp 517–538 | Cite as

Generating the weakly efficient set of nonconvex multiobjective problems

  • Daniel GourionEmail author
  • Dinh The Luc
Article

Abstract

We present a method for generating the set of weakly efficient solutions of a nonconvex multiobjective optimization problem. The convergence of the method is proven and some numerical examples are encountered.

Keywords

Nonconvex multiobjective problem Weakly efficient solution Scalarization 

AMS Subject Classification

90C31 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Armand P. (1993). Finding all maximal efficient faces in multiobjective linear programming. Math. Program. Ser. A 61: 357–375 CrossRefGoogle Scholar
  2. 2.
    Benson H.P. (1979). Vector maximization with two objective functions. J. Optim. Theory Appl. 28: 253–257 CrossRefGoogle Scholar
  3. 3.
    Benson H.P. (1998). An outer approximation algorithm for generating all efficient extreme points in the outcome set of a multiple objective linear programming problem. J. Glob. Optim. 13: 1–24 CrossRefGoogle Scholar
  4. 4.
    Benson H.P. and SUN E. (2000). Outcome space partition of the weight set in multiobjective linear programming. J. Optim. Theory Appl. 105: 17–36 CrossRefGoogle Scholar
  5. 5.
    Chankong, V., Haimes, Y.Y.: Multiobjective Decision Making: Theory and Methodology. North- Holland Publishers (1983)Google Scholar
  6. 6.
    Das I. and Dennis J.E. (1998). Normal-boundary intersection: a new method for generating the Pareto surface in nonlinear multicriteria optimization problems. SIAM J. Optim. 8: 631–657 CrossRefGoogle Scholar
  7. 7.
    Debreu G. (1959). Theory of Value. John Wiley, New York Google Scholar
  8. 8.
    Jahn J. (2004). Vector Optimization: Theory, Applications and Extensions. Springer, Berlin Google Scholar
  9. 9.
    Kim N.T.B. and Luc D.T. (2000). Normal cones to a polyhedral convex set and generating efficient faces in linear multiobjective programming. Acta Mathematica Vietnamica 25: 101–124 Google Scholar
  10. 10.
    Klamroth K., Tind J. and Wiecek M.M. (2002). Unbiased approximation in multicriteria optimization. Math. Methods Oper. Res. 56: 413–457 CrossRefGoogle Scholar
  11. 11.
    Krasnoselskij M.A. (1964). Positive Solutions of Operator Equations. P.Noordhoff Ltd., Groningen Google Scholar
  12. 12.
    Lin J.G. (1975). Three methods for determining Pareto-optimal solutions of multiple-objective problems. In: Ho, Y.C. and Mitter, S.K. (eds) Large-Scale Systems, pp. Plenum Press, New York Google Scholar
  13. 13.
    Luc, D.T.: On scalarizing method in vector optimization. In: Fandel, G., Grauer, M., Kurzhanski, A., Wiersbicki, A.P. (eds.) Large-Scale Modelling and Interactive Decision Analysis. Proceedings, Eisenach 1985. LNEMS 273, pp. 46–51 (1986)Google Scholar
  14. 14.
    Luc D.T. (1987). Scalarization of vector optimization problems. J. Optim. Theory Appl. 55: 85–102 CrossRefGoogle Scholar
  15. 15.
    Luc D.T. (1989). Theory of Vector Optimization. Lectures Notes in Economics and Mathematical Systems 319. Springer-Verlag, Germany Google Scholar
  16. 16.
    Luc D.T., Phong T.Q. and Volle M. (2005). Scalarizing functions for generating the weakly efficient solution set in convex multiobjective problems. SIAM J. Optim. 15: 987–1001 CrossRefGoogle Scholar
  17. 17.
    Luc D.T., Phong T.Q. and Volle M. (2006). A new duality approach to solving concave vector maximization problems. J. Glob. Optim. 36: 401–423 CrossRefGoogle Scholar
  18. 18.
    Miettinen K. (1999). Nonlinear Multiobjective Optimization. Kluwer Academic Publishers, Boston Google Scholar
  19. 19.
    Pascoletti A. and Serafini P. (1984). Scalarizing vector optimization problems. J. Optim. Theory Appl. 42: 499–524 CrossRefGoogle Scholar
  20. 20.
    Rakowska J., Hafka R.T. and Watson L.T. (1991). Tracing the efficient curve for multi-objective control- structure optimization. Comput. Syst. Eng. 2: 461–471 CrossRefGoogle Scholar
  21. 21.
    Rubinov A.M. (1977). Sublinear operators and their applications. Russ. Math. Surv. 32: 115–175 CrossRefGoogle Scholar
  22. 22.
    Ruzika S. and Wiecek M.M. (2005). Approximation methods in multiobjective programming. J. Optim. Theory Appl. 126: 473–501 CrossRefGoogle Scholar
  23. 23.
    Steuer R.E. (1986). Multiple-Criteria Optimization: Theory, Computation and Application. John Wiley, New York Google Scholar
  24. 24.
    (1997). Trends in Multicriteria Decision Making. Lectures Notes in Economics and Mathematical Systems 465. Springer, Berlin Google Scholar
  25. 25.
    Yu P.L. (1985). Multiple-Criteria Decision Making: Concepts, Techniques and Extensions. Plenum Press, New York Google Scholar
  26. 26.
    Zeleny M. (1974). Linear Multiobjective Programming. Springer Verlag, New York Google Scholar

Copyright information

© Springer Science+Business Media, LLC. 2007

Authors and Affiliations

  1. 1.University of AvignonAvignonFrance

Personalised recommendations