Advertisement

Journal of Global Optimization

, Volume 41, Issue 3, pp 427–445 | Cite as

Self-adaptive velocity particle swarm optimization for solving constrained optimization problems

  • Haiyan Lu
  • Weiqi Chen
Article

Abstract

Particle swarm optimization (PSO) is originally developed as an unconstrained optimization technique, therefore lacks an explicit mechanism for handling constraints. When solving constrained optimization problems (COPs) with PSO, the existing research mainly focuses on how to handle constraints, and the impact of constraints on the inherent search mechanism of PSO has been scarcely explored. Motivated by this fact, in this paper we mainly investigate how to utilize the impact of constraints (or the knowledge about the feasible region) to improve the optimization ability of the particles. Based on these investigations, we present a modified PSO, called self-adaptive velocity particle swarm optimization (SAVPSO), for solving COPs. To handle constraints, in SAVPSO we adopt our recently proposed dynamic-objective constraint-handling method (DOCHM), which is essentially a constituent part of the inherent search mechanism of the integrated SAVPSO, i.e., DOCHM + SAVPSO. The performance of the integrated SAVPSO is tested on a well-known benchmark suite and the experimental results show that appropriately utilizing the knowledge about the feasible region can substantially improve the performance of the underlying algorithm in solving COPs.

Keywords

Constrained optimization Particle swarm optimization Stochastic optimization Evolutionary algorithms Nonlinear programming Constraint-handling mechanism 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Floudas, C.A., Pardalos, P.M.: A collection of test problems for constrained global optimization algorithms. Lect. Notes Comput. Sci. 455, Springer-Verlag (1987)Google Scholar
  2. 2.
    Himmelblau, D.M.: Applied Nonlinear Programming. McGraw-Hill (1972)Google Scholar
  3. 3.
    Coello Coello C.A. (2002). Theoretical and numerical constraint-handling techniques used with evolutionary algorithms: A survey of the state of the art. Comput. Meth. Appl. Mech. Eng. 191: 1245–1287 CrossRefGoogle Scholar
  4. 4.
    Dong Y., Tang J.-F., Xu B.-D. and Wang D.-W. (2005). An application of swarm optimization to nonlinear programming. Comput. Math. Appl. 49: 1655–1668 CrossRefGoogle Scholar
  5. 5.
    Hu, X., Eberhart, R.C., Shi, Y.: Engineering optimization with particle swarm. In: Proceedings of 2003 IEEE Swarm Intelligence Symposium, pp. 53–57 (2003)Google Scholar
  6. 6.
    Parsopoulos K.E. and Vrahatis M.N. (2005). Unified particle swarm optimization for solving constrained engineering optimization problems. Lect. Notes Comput. Sci. 3612: 582–591 CrossRefGoogle Scholar
  7. 7.
    Yeniay Ö. (2005). Penalty function methods for constrained optimization with genetic algorithms. Math. Comput. Appl. 10: 45–56 Google Scholar
  8. 8.
    Kennedy, J., Eberhart, R.C.: Particle swarm optimization. In: Proceedings of IEEE International Conference on Neural Networks, Perth, Australia, pp. 1942–1948 (1995)Google Scholar
  9. 9.
    Eberhart, R.C., Kennedy, J.: A new Optimizer using particle swarm theory. In: Proceedings of 6th International Symposium on Micro Machine and Human Science, Nagoya, Japan, pp. 39–43 (1995)Google Scholar
  10. 10.
    Michalewicz Z. and Schoenauer M. (1996). Evolutionary algorithms for constrained parameter optimization problems. Evol. Comput. 4: 1–32 CrossRefGoogle Scholar
  11. 11.
    Coello Coello C.A. (2000). Treating constraints as objectives for single objective evolutionary computations. Eng. Optim. 32: 275–308 CrossRefGoogle Scholar
  12. 12.
    Hu, X., Eberhart, R.C.: Solving constrained nonlinear optimization problems with particle swarm optimization. In: Proceedings of 6th World Multiconference on Systemics, Cybernetics and Informatics (SCI 2002), Orlando, USA (2002)Google Scholar
  13. 13.
    Toscano, G., Coello Coello, C.A.: A constraint-handling mechanism for particle swarm optimization. In: Proceedings of the 2004 Congress on Evolutionary Computation, June, IEEE, pp. 1396–1403 (2004)Google Scholar
  14. 14.
    Sedlaczek, K., Eberhart, P.: Constrained particle swarm optimization of mechanical systems. In: Proceedings of Sixth World Congresses of Structural and Multidisciplinary Optimization. Rio de Janeiro, Brizil (2005)Google Scholar
  15. 15.
    Parsopoulos, K.E., Vrahatis, M.N.: Particle swarm optimization method for constrained optimization problems. In: Proceedings of the Euro-International Symposium on Computational Intelligence (E-ISCI 2002) (2002)Google Scholar
  16. 16.
    Runarsson T.P. and Yao X. (2000). Stochastic ranking for constrained evolutionary optimization. IEEE Trans. Evol. Comput. 4: 284–294 CrossRefGoogle Scholar
  17. 17.
    Koziel S. and Michalewicz Z. (1999). Evolutionary algorithms, homomorphous mappings and constrained parameter optimization. Evol. Comput. 7: 19–44 CrossRefGoogle Scholar
  18. 18.
    Zhang, W.-J., Xie, X.-F.: DEPSO: hybrid particle swarm with differential evolution operator. In: Proceedings of IEEE International Conference on Systems, Man and Cybernetics, October, IEEE, pp. 3816–3821 (2003)Google Scholar
  19. 19.
    Lu H.Y. and Chen W.Q. (2006). Dynamic-objective particle swarm optimization for constrained optimization problems. J. Comb. Optim. 12: 409–419 CrossRefGoogle Scholar
  20. 20.
    Kennedy, J.: Dynamic-probabilistic particle swarms. GECCO’05, June 2005, Washington, DC, USA, pp. 201–207 (2005)Google Scholar
  21. 21.
    Eberhart R.C. and Shi Y. (1998). Comparison between genetic algorithms and particle swarm optimization. In: Porto, V.W., Saravanan, N., Waagen, D. and Eiben, A.E. (eds) Evolutionary Programming, Vol. 7, pp 611–616. Springer-Verlag, Berlin CrossRefGoogle Scholar
  22. 22.
    Shi Y. and Eberhart R.C. (1998). Parameter selection in particle swarm optimization. In: Porto, V.W., Saravanan, N., Waagen, D. and Eiben, A.E. (eds) Evolutionary Programming, vol. 7, pp 591–600. Springer-Verlag, Berlin CrossRefGoogle Scholar
  23. 23.
    Shi, Y., Eberhart, R.C.: A modified particle swarm optimizer. In: Proceeding of IEEE Conference on Evolutionary Computation, Anchorage, AK, pp. 69–73 (1998)Google Scholar
  24. 24.
    Shi, Y.: Particle swarm optimization. IEEE Neural Networks Society, February, pp. 8–13 (2004)Google Scholar
  25. 25.
    Muñoz Zavala, A.E., Hernández Aguirre, A., Villa Diharce, E.R.: Constrained optimization via particle evolutionary swarm optimization algorithm (PESO), GECCO’05, Washington, DC, USA, 25–27 June, pp. 209–216 (2005)Google Scholar
  26. 26.
    Storn R. and Price K. (1997). Differential evolution—a simple andd efficient heuristic for global optimization over continuous spaces. J. Global Optim. 11: 341–359 CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC. 2007

Authors and Affiliations

  1. 1.School of ScienceJiangnan UniversityWuxiP.R. China
  2. 2.Department of MathematicsZhejiang UniversityHangzhouP.R. China
  3. 3.School of Information TechnologyJiangnan UniversityWuxiP.R. China
  4. 4.China Ship Scientific Research CenterWuxiP.R. China

Personalised recommendations