Journal of Global Optimization

, Volume 41, Issue 3, pp 351–364 | Cite as

On Nash–Cournot oligopolistic market equilibrium models with concave cost functions

  • Le D. MuuEmail author
  • V. H. Nguyen
  • N. V. Quy


We consider Nash–Cournot oligopolistic market equilibrium models with concave cost functions. Concavity implies, in general, that a local equilibrium point is not necessarily a global one. We give conditions for existence of global equilibrium points. We then propose an algorithm for finding a global equilibrium point or for detecting that the problem is unsolvable. Numerical experiments on some randomly generated data show efficiency of the proposed algorithm.


Nonconvex Nash–Cournot model Equilibrium Concave cost Variational inequality Existence of solution Algorithm 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Anh, P.N., Muu, L.D., Nguyen, V.H., Strodiot, J.J.: On the contraction and nonexpensiveness properties of the marginal mapping in generalized variational inequalities involving cocoercive operators. In: Eberhard, A., Hadjisavvas, N., Luc, D.T.(eds). Generalized Convexity, and Generalized Monotonicity and Applications, pp. 89–111, Chapter 5, Springer (2005)Google Scholar
  2. 2.
    Anh P.N., Muu L.D., Nguyen V.H. and Strodiot J.J. (2005). Using the Banach contraction principle to implement the proximal point method for solving multivalued monotone variational inequalities. J. Optim. Theory Appl. 124: 285–306 CrossRefGoogle Scholar
  3. 3.
    Aubin J.P. and Ekeland I. (1984). Applied Nonlinear Analysis. Wiley, New York Google Scholar
  4. 4.
    Berge C. (1968). Topological Spaces. MacMillan, New York Google Scholar
  5. 5.
    Blum E. and Oettli W. (1994). From optimization and variational inequality to equilibrium problems. Mathe. Stud. 63: 127–149 Google Scholar
  6. 6.
    Dafermos S. (1990). Exchange price equilibria and variational inequalities. Math. Program. 46: 391–402 CrossRefGoogle Scholar
  7. 7.
    Dafermosm S. and Nagurney A. (1997). Oligopolistic and competitive behavior of spatially separated markets. Reg. Sci. Urban Econ. 17: 225–254 Google Scholar
  8. 8.
    Cohen G. (1998). Auxiliary problem principle extended to variational inequalities. J. Optim. Theory Appl. 59: 325–333 Google Scholar
  9. 9.
    Facchinei F. and Pang J.S. (2002). Finite-Dimensional Variational Inequalities and Complementarity Problems. Springer, Berlin Google Scholar
  10. 10.
    Fukushima M. (1992). Equivalent differentiable optimization problems and descent methods for asymmetric variational inequality problems. Math. Program. 53: 99–110 CrossRefGoogle Scholar
  11. 11.
    Harker P.T. and Pang J.S. (1990). Finite-dimensional variational inequality and nonlinear complementarity problems: a survey of theory, algorithms and applications. Mathe. Program. 48: 161–220 CrossRefGoogle Scholar
  12. 12.
    Hue T.T., Strodiot J.J. and Nguyen V.H. (2004). Convergence of the Approximate Auxiliary Problem Method for Solving Generalized Variational Inequalities. J. Optim. Theory Appl. 121: 119–145 CrossRefGoogle Scholar
  13. 13.
    Horst R. and Tuy H. (1990). Global Optimization (Deterministic Approach). Springer, Berlin Google Scholar
  14. 14.
    Kinderlehrer, D., Stampacchia, G.: An Introduction to Variational Inequalities and Their Applications. Academic Press (1980)Google Scholar
  15. 15.
    Konnov I. (2001). Combined Relaxation Methods for Variational Inequalities. Springer, Berlin Google Scholar
  16. 16.
    Konnov I. and Kum S. (2001). Descent methods for mixed variational inequalities in a Hilbert space. Nonlinear Anal. Theory Meth. Appl. 47: 561–572 CrossRefGoogle Scholar
  17. 17.
    Marcotte P. (1995). A new algorithm for solving variational inequalities. Mathematical Programming 33: 339–351 CrossRefGoogle Scholar
  18. 18.
    Muu L.D. (1986). An augmented penalty function method for solving a class of variational inequalities. Soviet. Comput. Math. Phys. 12: 1788–1796 Google Scholar
  19. 19.
    Muu W. and Oettli L.D. (1992). Convergence of an adaptive scheme for finding constraint equilibria. Nonlinear Anal Theory Meth Appl. 18: 1159–1166 CrossRefGoogle Scholar
  20. 20.
    Muu L.D. and Quy N.V. (2003). A global optimization method for solving convex quadratic bilevel programming problems. J. Global Optim. 26: 199–219 CrossRefGoogle Scholar
  21. 21.
    Nagurney A. (1993). Network Economics: A Variational Inequality Approach. Kluwer, Academic Publishers Google Scholar
  22. 22.
    Noor M.A. (2001). Iterative schemes for quasimonotone mixed variational inequalities. Optimization 50: 29–44 CrossRefGoogle Scholar
  23. 23.
    Patriksson M. (1999). Nonlinear Programming and Variational Inequality Problems: A Unified Approach. Kluwer, Dordrecht Google Scholar
  24. 24.
    Patriksson M. (1997). Merit function and descent algorithms for a class of variational inequality problems.. Optimization 41: 37–55 CrossRefGoogle Scholar
  25. 25.
    Salmon G., Nguyen V.H. and Strodiot J.J. (2000). Coupling the auxiliary problem principle and epiconvergence theory to solve general variational inequalities. J. Optim Theory Appl. 104: 629–657 CrossRefGoogle Scholar
  26. 26.
    Taji T. and Fukushima M. (1996). A new merit function and a successive quadratic programming algorithm for variational inequality problem. SIAM J. Optim. 6: 704–713 Google Scholar

Copyright information

© Springer Science+Business Media, LLC. 2007

Authors and Affiliations

  1. 1.Institute of MathematicsHanoiVietnam
  2. 2.Département de MathématiquesFUNDP unité d’OptimisationNamurBelgium
  3. 3.Financial and Accounting Institute, Co Nhue, Tu LiemHanoiVietnam

Personalised recommendations