Advertisement

Journal of Global Optimization

, Volume 42, Issue 2, pp 157–175 | Cite as

On Saaty’s and Koczkodaj’s inconsistencies of pairwise comparison matrices

  • Sándor Bozóki
  • Tamás RapcsákEmail author
Article

Abstract

The aim of the paper is to obtain some theoretical and numerical properties of Saaty’s and Koczkodaj’s inconsistencies of pairwise comparison matrices (PRM). In the case of 3 ×  3 PRM, a differentiable one-to-one correspondence is given between Saaty’s inconsistency ratio and Koczkodaj’s inconsistency index based on the elements of PRM. In order to make a comparison of Saaty’s and Koczkodaj’s inconsistencies for 4  ×  4 pairwise comparison matrices, the average value of the maximal eigenvalues of randomly generated n ×  n PRM is formulated, the elements a ij (i < j) of which were randomly chosen from the ratio scale
$$\dfrac{1}{M}, \dfrac{1}{M-1}, \ldots , \dfrac{1}{2}, 1, 2, \ldots , M - 1, M,$$
with equal probability 1/(2M − 1) and a ji is defined as 1/a ij . By statistical analysis, the empirical distributions of the maximal eigenvalues of the PRM depending on the dimension number are obtained. As the dimension number increases, the shape of distributions gets similar to that of the normal ones. Finally, the inconsistency of asymmetry is dealt with, showing a different type of inconsistency.

Keywords

Pairwise comparison matrix Inconsistency Inconsistency index Randomly generated pairwise comparison matrix 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Aguarón J. and Moreno-Jiménez J.M. (2003). The geometric consistency index: Approximated thresholds. Euro. J. Oper. Res. 147: 137–145 CrossRefGoogle Scholar
  2. de Borda J.C. (1781). Mémoire sur les électiones au scrutin. Histoire de l’Académie Royale des Sciences, Paris Google Scholar
  3. Chu A.T.W., Kalaba R.E. and Spingarn K. (1979). A comparison of two methods for determining the weight belonging to fuzzy sets. J. Optim. Theory Appl. 4: 531–538 CrossRefGoogle Scholar
  4. Condorcet, M.: Essai sur l’application de l’analyse à la probabilité des décisions rendues á la pluralité des voix, Paris (1785)Google Scholar
  5. Crawford G. and Williams C. (1985). A note on the analysis of subjective judgment matrices. J. Math. Psychol. 29: 387–405 CrossRefGoogle Scholar
  6. Dodd F.J., Donegan H.A. and McMaster T.B.M. (1993). A statistical approach to consistency in AHP. Math. Comput. Modelling 18: 19–22 CrossRefGoogle Scholar
  7. Dodd F.J., Donegan H.A. and McMaster T.B.M. (1995). Inverse inconsistency in analytic hierarchy process. Euro. J. Oper. Res. 80: 86–93 CrossRefGoogle Scholar
  8. Duszak Z. and Koczkodaj W.W. (1994). Generalization of a new definition of consistency for pairwise comparisons. Inform. Process. Lett. 52: 273–276 CrossRefGoogle Scholar
  9. Forman E.H. (1990). Random indices for incomplete pairwise comparison matrices. Euro. J. Oper. Res. 48: 153–155 CrossRefGoogle Scholar
  10. Gass S.I. and Rapcsák T. (2004). Singular value decomposition in AHP. Euro. J. Oper. Res. 154(3): 573–584 CrossRefGoogle Scholar
  11. Gass S.I. and Standard S.M. (2002). Characteristics of positive reciprocal matrices in the analytic hierarchy process. J. Oper. Res. Soc. 53: 1385–1389 CrossRefGoogle Scholar
  12. Golden, B.L., Wang, Q.: An alternative measure of consistency. In: Golden, B.L., Wasil, E.A., Hacker, P.T. (eds.) Analytic Hierarchy Process: Applications and Studies, pp. 68–81. Springer-Verlag (1990)Google Scholar
  13. Jensen, R.E.: Comparison of eigenvector, least squares, Chi square and logarithmic least squares methods of scaling a reciprocal matrix. Trinity University, Working Paper 127 (1983). http://www.trinity.edu/rjensen/127wp/127wp.htm
  14. Johnson C.R., Beine W.B. and Wang T.J. (1979). Right-left asymmetry in an eigenvector ranking procedure. J. Math. Psychol. 19: 61–64 CrossRefGoogle Scholar
  15. Koczkodaj W.W. (1993). A new definition of consistency of pairwise comparisons. Math. Comput. Modelling 8: 79–84 CrossRefGoogle Scholar
  16. Koczkodaj, W.W., Herman, M.W., Orlowski, M.: Using consistency-driven pairwise comparisons in knowledge-based systems. In: Proceedings of the Sixth International Conference on Information and Knowledge Management, pp. 91–96. ACM Press (1997)Google Scholar
  17. Lane E.F. and Verdini W.A. (1989). A consistency test for AHP decision makers. Decis. Sci. 20: 575–590 CrossRefGoogle Scholar
  18. Monsuur H. (1996). An intrinsic consistency threshold for reciprocal matrices. Euro. J. Oper. Res. 96: 387–391 CrossRefGoogle Scholar
  19. Murphy C.K. (1993). Limits on the analytic hierarchy process from its consistency index. Euro. J. Oper. Res. 65: 138–139 CrossRefGoogle Scholar
  20. Peláez J.I. and Lamata M.T. (2003). A new measure of consistency for positive reciprocal matrices. Comput. Math. Appl. 46: 1839–1845 CrossRefGoogle Scholar
  21. Saaty T.L. (1980, 1990). The Analytic Hierarchy Process. McGraw-Hill, New York Google Scholar
  22. Saaty, T.L.: Fundamentals of Decision Making. RSW Publications (1994)Google Scholar
  23. Standard, S.M.: Analysis of positive reciprocal matrices. Master’s Thesis, Graduate School of the University of Maryland (2000)Google Scholar
  24. Stein W.E. and Mizzi P.J. (2007). The harmonic consistency index for the analytic hierarchy process. Euro. J. Oper. Res. 177: 488–497 CrossRefGoogle Scholar
  25. Thorndike E.L. (1920). A constant error in psychological ratings. J. Appl. Psychol. 4: 25–29 CrossRefGoogle Scholar
  26. Thurstone L.L. (1927). The method of paired comparisons for social values. J. Abnormal Soc. Psychol. 21: 384–400 CrossRefGoogle Scholar
  27. Tummala V.M.R. and Ling H. (1998). A note on the computation of the mean random consistency index of the analytic hierarchy process (AHP). Theory Decis. 44: 221–230 CrossRefGoogle Scholar
  28. Vargas L.G. (1982). Reciprocal matrices with random coefficients. Math. Modelling 3: 69–81 CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC. 2007

Authors and Affiliations

  1. 1.Computer and Automation Research InstituteHungarian Academy of SciencesBudapestHungary

Personalised recommendations