Journal of Global Optimization

, Volume 44, Issue 1, pp 1–28 | Cite as

Local minima of quadratic forms on convex cones

  • Alberto SeegerEmail author
  • Mounir Torki


We study the local minima and the critical values of a quadratic form on the trace of a convex cone. This variational problem leads to the development of a spectral theory that combines matrix algebra and facial analysis of convex cones.


Convex cones Conic quadratic programming Linear complementarity problems Cone-constrained eigenvectors 

Mathematics Subject Classifications

15A18 58C40 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Barker G.P. (1981). Theory of cones. Linear Algebra Appl. 39: 263–291 CrossRefGoogle Scholar
  2. 2.
    Berman A., Plemmons R.J. (1994). Nonnegative Matrices in the Mathematical Sciences. SIAM Publications, Philadelphia Google Scholar
  3. 3.
    Conrad F., Brauner C.M., Issard-Roch F., Nicolaenko B. (1985). Nonlinear eigenvalue problems in elliptic variational inequalities: a local study. Comm. Partial Differential Equations 10: 151–190 CrossRefGoogle Scholar
  4. 4.
    Diestel R. (1997) Graph Theory. Graduate Texts in Mathematics 173. Springer-Verlag, New York Google Scholar
  5. 5.
    Do C. (1975). Problèmes de valeurs propres pour une inéquation variationnelle sur un cône et application au flambement unilatéral d’une plaque mince. C. R. Acad. Sci. Paris 280: 45–48 Google Scholar
  6. 6.
    Iusem A., Seeger A. (2005). On vectors achieving the maximal angle of a convex cone. Math. Program. 104: 501–523 CrossRefGoogle Scholar
  7. 7.
    Iusem A., Seeger A. (2007). On convex cones with infinitely many critical angles. Optimization 56: 115–128 CrossRefGoogle Scholar
  8. 8.
    Iusem, A., Seeger, A.: Searching for critical angles in a convex cone. Math. Program. (2008, in press) available online at doi:10.1007/s10107-007-0146-0Google Scholar
  9. 9.
    Klarbring A. (1988). On discrete and discretized nonlinear elastic structures in unilateral contact: stability, uniqueness and variational principles. Int. J. Solids Structures 24: 459–479 CrossRefGoogle Scholar
  10. 10.
    Pinto da Costa, A., Figueiredo, I.N., Judice, J.A., Martins, J.A.C.: A complementarity eigenproblem in the stability of finite dimensional elastic systems with frictional contact. Complementarity: Applications, Algorithms and Extensions, pp. 67–83. Applied Optimization Series 50. M. Ferris, O. Mangasarian and J.S. Pang (Eds), Kluwer Acad. Publ., Dordrecht, 1999Google Scholar
  11. 11.
    Pinto da Costa A., Martins J.A.C., Figueiredo I.N., Judice J.J. (2004). The directional instability problem in systems with frictional contacts. Comput. Methods Appl. Mech. Engrg. 193: 357–384 CrossRefGoogle Scholar
  12. 12.
    Pinto da Costa, A., Seeger, A.: Cone-constrained eigenvalue problems. Part I: theory. Submitted.Google Scholar
  13. 13.
    Riddell R.C. (1977). Eigenvalue problems for nonlinear elliptic variational inequalities on a cone. J. Functional Analysis 26: 333–355 CrossRefGoogle Scholar
  14. 14.
    Seeger A. (1999). Eigenvalue analysis of equilibrium processes defined by linear complementarity conditions. Linear Algebra Appl. 292: 1–14 CrossRefGoogle Scholar
  15. 15.
    Seeger A., Torki M. (2003). On eigenvalues induced by a cone constraint. Linear Algebra Appl. 372: 181–206 CrossRefGoogle Scholar
  16. 16.
    Tam B.S. (1985). On the duality operator of a convex cone. Linear Algebra Appl. 64: 33–56 CrossRefGoogle Scholar
  17. 17.
    Ziegler G.M. (1995). Lectures on Polytopesj. Springer-Verlag, New York Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2007

Authors and Affiliations

  1. 1.Department of MathematicsUniversity of AvignonAvignonFrance
  2. 2.University of Avignon, I.U.P.AvignonFrance

Personalised recommendations