Journal of Global Optimization

, Volume 43, Issue 2–3, pp 219–230 | Cite as

Global optimization of higher order moments in portfolio selection

Article

Abstract

We discuss the global optimization of the higher order moments of a portfolio of financial assets. The proposed model is an extension of the celebrated mean variance model of Markowitz. Asset returns typically exhibit excess kurtosis and are often skewed. Moreover investors would prefer positive skewness and try to reduce kurtosis of their portfolio returns. Therefore the mean variance model (assuming either normally distributed returns or quadratic utility functions) might be too simplifying. The inclusion of higher order moments has therefore been proposed as a possible augmentation of the classical model in order to make it more widely applicable. The resulting problem is non-convex, large scale, and highly relevant in financial optimization. We discuss the solution of the model using two stochastic algorithms. The first algorithm is Differential Evolution (DE). DE is a population based metaheuristic originally designed for continuous optimization problems. New solutions are generated by combining up to four existing solutions plus noise, and acceptance is based on evolutionary principles. The second algorithm is based on the asymptotic behavior of a suitably defined Stochastic Differential Equation (SDE). The SDE consists of three terms. The first term tries to reduce the value of the objective function, the second enforces feasibility of the iterates, while the third adds noise in order to enable the trajectory to climb hills.

Keywords

Portfolio selection Heuristics Global optimization Markowitz model 

Jel Classification

C61 G11 

References

  1. 1.
    Aluffi-Pentini F., Parisi V. and Zirilli F. (1985). Global optimization and stochastic differential equations. J. Optim. Theory Appl. 47(1): 1–16 CrossRefGoogle Scholar
  2. 2.
    Arditti F.A. (1967). Risk and required return on equity. J. Finance 22(1): 19–36 CrossRefGoogle Scholar
  3. 3.
    Athayde G. and Flores R. (2003). Incorporating skewness and Kurtosis in portfolio optimization: a multidimensional efficient set. In: Satchell, S. and Scowcroft, A. (eds) Advances in Portfolio Construction and Implementation, pp 243–257. Butterworth-Heinemannpp, Oxford CrossRefGoogle Scholar
  4. 4.
    Black F. (1972). Capital market equilibrium with restricted borrowing. J. Finance 45(3): 444–455 Google Scholar
  5. 5.
    Boyle, P., Ding, B.: Portfolio selection with skewness. In Breton, M., Ben-Ameur, H., (eds.) Numerical Methods in Finance, GERAD Groupe d’études et de recherche en analyse des décisions. Springer (2005)Google Scholar
  6. 6.
    Chiang, T.-S., Hwang, C.-R., Sheu, S.J.: Diffusion for global optimization in R n. SIAM J. Control Optim. 25(3),737–753 (1987) ISSN 0363-0129.Google Scholar
  7. 7.
    Chunhachinda P., Dandapani K., Hamid S. and Prakash A. (1997). Portfolio selection and skewness: evidence from international stock markets. J. Bank. Finance 21: 143–167 CrossRefGoogle Scholar
  8. 8.
    Friend I. and Westerfield R. (1980). Co-skewness and capital asset pricing. J. Finance 35(4): 897–913 CrossRefGoogle Scholar
  9. 9.
    Geman S. and Hwang C.-R. (1986). Diffusions for global optimization. SIAM J. Control Optim. 24(5): 1031–1043 ISSN 0363-0129CrossRefGoogle Scholar
  10. 10.
    Gidas, B.: The Langevin equation as a global minimization algorithm. In: Disordered systems and biological organization (Les Houches, 1985), volume 20 of NATO Adv. Sci. Inst. Ser. F Comput. Systems Sci. pp. 321–326 Springer, Berlin (1986)Google Scholar
  11. 11.
    Jean W.H. (1973). More on multidimensional portfolio analysis. J. Finance Quantit. Anal. 8(3): 475–490 CrossRefGoogle Scholar
  12. 12.
    Konno, H.: Applications of global optimization to portfolio analysis. In: Charles, A., Pierr H., and Gilles, J., (eds.) Essays and Surveys in Global Optimization, pp. 195–210. Springer (2005)Google Scholar
  13. 13.
    Konno H. and Suzuki K.-I (1995). A mean-variance-skewness portfolio optimization model. J. Operat. Res. Soc. Japan 38(2): 173–187 Google Scholar
  14. 14.
    Konno H., Shirakawa H. and Yamazaki H. (1993). A mean-absolute deviation-skewness portfolio optimization model. Ann. Operat. Res. 45: 205–220 CrossRefGoogle Scholar
  15. 15.
    Kraus A. and Litzenberger R.H. (1976). Skewness preference and the valuation of risk assets. J. Finance 31(4): 1085–1100 CrossRefGoogle Scholar
  16. 16.
    Lai K.K., Yu L. and Wang S. (2006). Mean-variance-skewness-kurtosis-based portfolio optimization. First International Multi-Symposiums on Computer and Computational Sciences (IMSCCS’06) vol. 2 2: 292–297 CrossRefGoogle Scholar
  17. 17.
    Maranas C.D., Androulakis I.P., Floudas C.A., Berger A.J. and Mulvey J.M. (1997). Solving long-term financial planning problems via global optimization. J. Econom. Dynam. Control 21(8-9): 1405–1425 CrossRefGoogle Scholar
  18. 18.
    Maringer, D.: Portfolio management with heuristic optimization. Springer-Verlag (2005)Google Scholar
  19. 19.
    Maringer, D. Oyewumi, O.: Index tracking with constrained portfolios. To appear in Intell. Syst. Account. Finan. ManageGoogle Scholar
  20. 20.
    Markowitz H.M. (1952). Portfolio selection. J. Finance 7(1): 77–91 CrossRefGoogle Scholar
  21. 21.
    Parpas, P.: Constrained global optimization and stochastic differential equations. Technical Report, Department of Computing, Imperial College London (2007)Google Scholar
  22. 22.
    Parpas, P., Rustem, B.: Global optimization of the scenario generation and portfolio selection problems. In: Computational Science and Its Applications – ICCSA 2006, Proceedings Part III, vol. 3982 of Lecture Notes in Computer Science (2006)Google Scholar
  23. 23.
    Parpas P., Rustem B. and Pistikopoulos E.N. (2006). Linearly constrained global optimization and stochastic differential equations. J. Global Optim. 36(2): 191–217 ISSN 0925-5001CrossRefGoogle Scholar
  24. 24.
    Prakash A., Chang C. and Pactwa T. (2003). Selecting a portfolio with skewness: recent evidence from US, european, and latin american equity markets. J. Bank. Finance 27: 1375–1390 CrossRefGoogle Scholar
  25. 25.
    Price, K., Storn, R., Lampinen, J.: Differential Evolution: A Practical Approach to Global Optimization. Springer (2005)Google Scholar
  26. 26.
    Ranaldo, A., Favre, L.: How to price hedge funds: from two- to four-moment capm. Technical report, EDHEC Risk and Asset Management Research Centre (2003)Google Scholar
  27. 27.
    Recchioni M.C. and Scoccia A. (2000). A stochastic algorithm for constrained global optimization. J. Global Optim 16(3): 257–270 ISSN 0925-5001CrossRefGoogle Scholar
  28. 28.
    Rom M. and Avriel M. (1989). Properties of the sequential gradient-restoration algorithm (SGRA). II. Convergence analysis. J. Optim. Theory Appl. 62(1): 99–125 ISSN 0022-3239 CrossRefGoogle Scholar
  29. 29.
    Spall J.C. (2003). Introduction to Stochastic Search and Optimization. John Wiley & Sons, Hoboken, NJ Google Scholar
  30. 30.
    Steinbach, M.C.: Markowitz revisited: mean-variance models in financial portfolio analysis. SIAM Rev. 43(1), 31–85 (electronic)(2001) ISSN 0036-1445Google Scholar
  31. 31.
    Stone B. (1973). A linear programming formulation of the general portfolio selection problem. J. Financial Quantit. Anal. 8(4): 621–636 CrossRefGoogle Scholar
  32. 32.
    Storn R., Price K.: Differential evolution—a simple and efficient adaptive scheme for global optimization over continuous spaces. Technical report, International Computer Science Institute, Berkeley (1995)Google Scholar
  33. 33.
    Storn R. and Price K. (1997). Differential evolution—a simple and efficient heuristic for global optimization over continuous spaces. J. Global Optim. 11(4): 341–359 CrossRefGoogle Scholar
  34. 34.
    Zirilli, F.: The use of ordinary differential equations in the solution of nonlinear systems of equations. In: Nonlinear Optimization, 1981 (Cambridge, 1981), NATO Conf. Ser. II: Systems Sci., pp. 39–46. Academic Press, London (1982)Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2007

Authors and Affiliations

  1. 1.CCFEAUniversity of EssexColchesterUK
  2. 2.Department of ComputingImperial CollegeLondonUK

Personalised recommendations