Journal of Global Optimization

, Volume 43, Issue 2–3, pp 407–413 | Cite as

Concave programming and DH-point



An extreme point property of optimal solutions of general concave programming problems is established that generalizes both Du-Hwang’s minimax theorem and its continuous version by Du and Pardalos.


Steiner ratio Du-Hwang minimax theorem DH-point Du-Pardalos’ continuous version General concave programming DC programming Optimality condition 

AMS Subject Classification

90C26 65K05 90C20 90C30 90C56 78M50 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Bourbaki N. (1958). Espaces vectoriels topologiques, Hermann & Cie 1957, Paris. Interscience Piblishers, NewYork Google Scholar
  2. 2.
    Du D.Z. and Hwang F.K. (1990). The Steiner ratio conjecture of Gilbert-Pollak is true. Proceedings of National Academy of Sciences 87: 9464–9466 CrossRefGoogle Scholar
  3. 3.
    Du D.Z. and Pardalos P.M. (1994). A continuous version of a result of Du and Hwang. J. Global Optimization 5: 127–130 CrossRefGoogle Scholar
  4. 4.
    Du, D.Z., Pardalos, P.M., Wu, W.: Mathematical theory of optimization, Kluwer (2001)Google Scholar
  5. 5.
    Holmes R.B.: Geometric functional analysis and its application, Springer (1975)Google Scholar
  6. 6.
    von Neumann J. (1928). Zur Theorie der Gesellschaftsspiele. Math. Ann 100: 295–320 CrossRefGoogle Scholar
  7. 7.
    Tuy, H.: DC optimization: theory, methods and algorithms. In: Horst, R., Pardalos, P.M. (eds.) Handbook of global optimization, pp. 149–216. Kluwer (1995)Google Scholar
  8. 8.
    Tuy, H.: Convex analysis and global optimization, Springer (1998)Google Scholar
  9. 9.
    Tuy H. (2004). Minimax theorems revisited. Acta Mathematica Vietnamica 29: 217–229 Google Scholar

Copyright information

© Springer Science+Business Media LLC 2007

Authors and Affiliations

  1. 1.Institute of MathematicsHanoiVietnam

Personalised recommendations