Journal of Global Optimization

, Volume 43, Issue 2–3, pp 175–190 | Cite as

Improved scatter search for the global optimization of computationally expensive dynamic models

  • Jose A. Egea
  • Emmanuel Vazquez
  • Julio R. Banga
  • Rafael Martí


A new algorithm for global optimization of costly nonlinear continuous problems is presented in this paper. The algorithm is based on the scatter search metaheuristic, which has recently proved to be efficient for solving combinatorial and nonlinear optimization problems. A kriging-based prediction method has been coupled to the main optimization routine in order to discard the evaluation of solutions that are not likely to provide high quality function values. This makes the algorithm suitable for the optimization of computationally costly problems, as is illustrated in its application to two benchmark problems and its comparison with other algorithms.


Global optimization Expensive functions Scatter search Kriging 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Banga J.R., Moles C.G. and Alonso A.A.  (2003). Global optimization of bioprocesses using stochastic and hybrid methods. In: Floudas, C.A. and Pardalos, P.M. (eds) Frontiers in Global Optimization, Nonconvex Optimization and Its Applications, vol. 74, pp 45–70. Kluwer, Hingham MA, USA Google Scholar
  2. Biegler L.T. and Grossmann I.E. (2004). Retrospective on optimization. Comput. Chem. Eng. 28(8): 1169–1192 Google Scholar
  3. (2001). The COST Simulation Benchmark—Description and Simulator Manual. COST (European Cooperation in the field of Scientific and Technical Research), Brussels Google Scholar
  4. Cox D.D. and John S. (1997). SDO: a statistical method for global optimization. In: Alexandrov, N. and Hussaini, M.Y. (eds) Multidisciplinary Design Optimization: State of the Art, pp 315–329. SIAM, Philadelphia Google Scholar
  5. Egea J.A., Rodríguez-Fernández M., Banga J.R. and Martí R. (2007). Scatter search for chemical and bio-process optimization. J. Global Optim. 37(3): 481–503 CrossRefGoogle Scholar
  6. Floudas C.A., Akrotirianakis I.G., Caratzoulas S., Meyer C.A. and Kallrath J. (2005). Global optimization in the 21st century: advances and challenges. Comput. Chem. Eng. 29(6): 1185–1202 CrossRefGoogle Scholar
  7. Glover F. (1977). Heuristics for integer programming using surrogate constraints. Decisi. Sci. 8: 156–166 CrossRefGoogle Scholar
  8. Gutmann H.M. (2001). A radial basis function method for global optimization. J. Global Optim. 19(3): 201–227 CrossRefGoogle Scholar
  9. Holmström K. and Edvall M.M. (2004). The tomlab optimization environment. In: Kallrath, J. and Basf, A.B. (eds) Modeling Languages in Mathematical Optimization, pp 369–378. Kluwer, Dordrecht Google Scholar
  10. Jones D.R., Schonlau M. and Welch W.J. (1998). Efficient global optimization of expensive black-box functions. J. Global Optim. 13: 455–492 CrossRefGoogle Scholar
  11. Jones D.R. (2001a). A taxonomy of global optimization methods based on response surfaces. J. Global Optim. 21(4): 345–383 CrossRefGoogle Scholar
  12. Jones D.R. (2001b). DIRECT global optimization algorithm. In: Floudas, C.A. and Pardalos, P.M. (eds) Encyclopedia of Optimization, pp 431–440. Kluwer, Dordrecht CrossRefGoogle Scholar
  13. Laguna M. and Martí R. (2003). Scatter Search: Methodology and Implementations in C. Kluwer, Boston Google Scholar
  14. Matheron G. (1963). Principles of geostatistics. Econ. Geol. 58: 1246–1266 CrossRefGoogle Scholar
  15. Sasena M.J., Papalambros P. and Goovaerts P. (2002). Exploration of metamodeling sampling criteria for constrained global optimization. Eng. Optim. 34: 263–278 CrossRefGoogle Scholar
  16. Stein M.L. (1999). Interpolation of Spatial Data: some Theory for Kriging. Springer, New York Google Scholar
  17. Storn R. and Price K. (1997). Differential evolution—a simple and efficient heuristic for global optimization over continuous spaces. J. Global Optim. 11: 341–359 CrossRefGoogle Scholar
  18. Vazquez, E.: Modélisation comportementale de systèmes non-linéaires multivariables par méthodes à noyaux et applications. Ph.D. thesis, Paris XI Orsay University (2005)Google Scholar
  19. Vecchia A.V. (1998). Estimation and model identification for continuous spatial processes. J. R. Stat. Soc. B(50): 297–312 Google Scholar
  20. Yaglom A.M. (1986). Correlation Theory of Stationary and Related Random Functions I: Basic results. Springer Series in Statistics. Springer, New York Google Scholar
  21. The MathWorks Inc.: Optimization Toolbox for Use with Matlab®. User’s guide. Version 2Google Scholar

Copyright information

© Springer Science+Business Media LLC 2007

Authors and Affiliations

  • Jose A. Egea
    • 1
  • Emmanuel Vazquez
    • 2
  • Julio R. Banga
    • 1
  • Rafael Martí
    • 3
  1. 1.Instituto de Investigaciones Marinas (C.S.I.C.)Process Engineering GroupVigoSpain
  2. 2.Department of Signal and Electronic Systems, SupélecPlateau de MoulonGif sur YvetteFrance
  3. 3.Departamento de Estadística e Investigación OperativaUniversitat de ValènciaBurjassot (Valencia)Spain

Personalised recommendations