Journal of Global Optimization

, Volume 38, Issue 2, pp 283–296 | Cite as

Search space pruning and global optimisation of multiple gravity assist spacecraft trajectories

  • D. Izzo
  • V. M. Becerra
  • D. R. Myatt
  • S. J. Nasuto
  • J. M. Bishop
Original Paper


We introduce and describe the Multiple Gravity Assist problem, a global optimisation problem that is of great interest in the design of spacecraft and their trajectories. We discuss its formalization and we show, in one particular problem instance, the performance of selected state of the art heuristic global optimisation algorithms. A deterministic search space pruning algorithm is then developed and its polynomial time and space complexity derived. The algorithm is shown to achieve search space reductions of greater than six orders of magnitude, thus reducing significantly the complexity of the subsequent optimisation.


Multiple gravity assist Space pruning Constraint propagation Differential evolution Particle swarm Genetic algorithm GASP Global trajectory optimisation 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Myatt, D.R., Becerra, V.M., Nasuto, S.J., Bishop, J.M.: Advanced global optimisation for analysis and design. Final Report. Ariadna id: 03/4101. Contract Number: 18138/04/NL/MV, 2004. Available: Scholar
  2. 2.
    Di Lizia, P., Radice, G.: Advanced global optimisation for mission analysis and Design. Final Report. Ariadna id: 03/4101. Contract Number: 18139/04/NL/MV, 2004. http:// pdfGoogle Scholar
  3. 3.
    Bryson A.E., Ho Y. (1989). Applied Optimal Control. Taylor & Francis, New York, pp. 1–89Google Scholar
  4. 4.
    Brown, C.D.: Spacecraft Mission Design, ch. 6, AIAA, Reston (1998)Google Scholar
  5. 5.
    Yokoyama N., Suzuki S. (2005) Modified genetic algorithm for constrained trajectory optimization. J. Guidance Control Dyn. 28(1): 139–144CrossRefGoogle Scholar
  6. 6.
    Vasile M., Summerer L., De Pascale P. (2005) Design of earth–mars transfer trajectories using evolutionary-branching technique. Acta Astronautica 56(8): 705–720CrossRefGoogle Scholar
  7. 7.
    Battin H.B. An Introduction to the Mathematics and Methods of Astrodynamics, ch. 7, AIAA, Reston (1999)Google Scholar
  8. 8.
    Prussing J.E. (2000) A class of optimal two-impulse rendezvous using multiple-revolution Lambert solutions. J. Astronaut. Sci. 48(2–4): 131–148Google Scholar
  9. 9.
    Gobetz F.B. Optimal transfer between hyperbolic asymptotes. AIAA J. 1(9), (1963)Google Scholar
  10. 10.
    Storn R., Price K., (1997) Differential evolution—a simple and efficient heuristic for global optimization over continuous spaces. J. Global Optim. 11, 341–359CrossRefGoogle Scholar
  11. 11.
    Kennedy, J., Eberhart, R.: Particle swarm optimization. Proc. IEEE Int. Conf. on Neural Networks, 1942–1948, (1995)Google Scholar
  12. 12.
    Blackwell, T.M., Branke, J.: Multi-swarm optimisation of the moving peaks function. Proc. Appl. Evolut. Comp. EuroWorkshops 2004, pp. 489–500, Springer-Verlag (2004)Google Scholar

Copyright information

© Springer Science+Business Media, Inc. 2006

Authors and Affiliations

  • D. Izzo
    • 1
  • V. M. Becerra
    • 2
  • D. R. Myatt
    • 2
  • S. J. Nasuto
    • 2
  • J. M. Bishop
    • 3
  1. 1.Advanced Concepts TeamEuropean Space Research and Technology CenterNoordwijkThe Netherlands
  2. 2.School of System EngineeringThe University of ReadingReadingUK
  3. 3.Department of ComputingGoldsmiths CollegeLondonUK

Personalised recommendations