Journal of Global Optimization

, Volume 38, Issue 4, pp 581–596 | Cite as

Two level minimization in multidimensional scaling

  • Antanas ŽilinskasEmail author
  • Julius Žilinskas
Original Article


Multidimensional scaling with city block norm in embedding space is considered. Construction of the corresponding algorithm is reduced to minimization of a piecewise quadratic function. The two level algorithm is developed combining combinatorial minimization at upper level with local minimization at lower level. Results of experimental investigation of the efficiency of the proposed algorithm are presented as well as examples of its application to visualization of multidimensional data.


Multilevel optimization Multidimensional scaling Metaheuristics Global optimization 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. An L., Tao P. (2001) D.C. programing approach to the multidimensional scaling problem. In: Pardalos P., Varbrand P. (eds) From Local to Global Optimization. Kluwer, Dodrecht, pp. 231–276Google Scholar
  2. Borg I., Groenen P. (1997) Modern Multidimensional Scaling. Springer, New YorkGoogle Scholar
  3. Brusco M.J. (2001) A simulated annealing heuristics for unidimensional and multidimensional (city block) scaling of symmetric proximity matrices. J. Classif. 18, 3–33Google Scholar
  4. Corne D., Dorigo M., Glover F. (eds) (1999) New Ideas in Optimization. McGraw-Hill, Maidenhead, EnglandGoogle Scholar
  5. Cox T., Cox M. (2001) Multidimensional Scaling. Chapman and Hall/CRC, Boca RatonGoogle Scholar
  6. De Leeuw J. (1984) Differentiability of Kruskal’s stress at a local minimum. Psychometrika 149, 111–113CrossRefGoogle Scholar
  7. De Leeuw J., Heiser W. (1982) Theory of multidimentional scaling. In: Krishnaiah P.R. (eds) Handbook of Statistics, vol. 2. North Holland, Amsterdam, pp. 285–316Google Scholar
  8. Everett J. (2001) Algorithms for multidimensional scaling. In: Chambers L. (eds) The practical handbook of genetic algorithms. Chapman and Hall/CRC, Boca Raton, pp. 2003–2233Google Scholar
  9. Festa P., Pardalos P.M., Resende M.G.C., Ribeiro C.C. (2002) Randomized heuristics for the max-cut problem. Optim. Methods Softw. 7, 1033–1058CrossRefGoogle Scholar
  10. Groenen, P.: The Majorization Approach to multidimentional scaling, p. 110. DSWO, Amsterdam (1993)Google Scholar
  11. Groenen P., Mathar R., Heiser W. (1995) The majorization approach to multidimensional scaling for minkowski distances. J. Classif. 12, 3–19CrossRefGoogle Scholar
  12. Groenen, P., Mathar, R., Trejos, J.: Global optimization methods for MDS applied to mobile communications. In: Gaul, W., Opitz, O., Schander, M. (eds.) Data Analysis: Scientific Models and Practical Applications, pp. 459–475. Springer, (2000)Google Scholar
  13. Horst R., Pardalos P., Thoai N. (1995) Introduction to global optimization. Kluwer, DodrechtGoogle Scholar
  14. Klock H., Buhmann J. (1999) Data visualization by multidimensional scaling: a deterministic annealing approach. Pattern Recogn. 33(4): 651–669CrossRefGoogle Scholar
  15. Leng P.L., Lau K. (2004) Estimating the city-block two-dimensional scaling model with simulated annealing. Eur. J. Oper. Res. 158, 518–524CrossRefGoogle Scholar
  16. Mathar R. (1997) Multidimensionale Skalierung. Teubner, StuttgartGoogle Scholar
  17. Mathar R. (1996) A hybrid global optimization algorithm for multidimensional scaling. In: Klar R., Opitz O. (eds) Classification and knowledge organization. Springer, Berlin, 63–71Google Scholar
  18. Mathar R., Žilinskas A. (1993) On global optimization in two-dimensional scaling. Acta Appl. Math. 33, 109–118CrossRefGoogle Scholar
  19. Michalewicz Z. (1996) Genetic Algorithms + Data Structures = Evolution Programs. Springer, BerlinGoogle Scholar
  20. Press W. et al. (2002) Numerical Recipes in C++. Cambridge University Press, CambridgeGoogle Scholar
  21. Törn, A., Žilinskas, A.: Global Optimization, Lecture Notes in Computer Science, vol. 350, pp. 1–250 (1989)Google Scholar
  22. Žilinskas A. (2003) On the distribution of the distance between two points in a cube. Random Oper. Stoch. Eqs. 11, 21–24Google Scholar

Copyright information

© Springer Science+Business Media, Inc. 2006

Authors and Affiliations

  1. 1.Institute of Mathematics and InformaticsVilniusLithuania

Personalised recommendations