Journal of Global Optimization

, Volume 37, Issue 4, pp 661–673

An updated geometric build-up algorithm for solving the molecular distance geometry problems with sparse distance data

Original Article


An updated geometric build-up algorithm is developed for solving the molecular distance geometry problem with a sparse set of inter-atomic distances. Different from the general geometric build-up algorithm, the updated algorithm re-computes the coordinates of the base atoms whenever necessary and possible. In this way, the errors introduced in solving the algebraic equations for the determination of the coordinates of the atoms are controlled in the intermediate computational steps. The method for re-computing the coordinates of the base atoms based on the estimation on the root-mean-square deviation (RMSD) is described. The results of applying the updated algorithm to a set of protein structure problems are presented. In many cases, the updated algorithm solves the problems with high accuracy when the results of the general algorithm are inadequate.


Protein structure determination Distance geometry Geometric build-up Root-mean-square deviation 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Berman H.M., Westbrook J., Feng Z., Gilliland G., Bhat T.N., Weissig H., Shindyalov L.N., Bourne P.E. (2000) The protein data bank. Nuc. Acid. Res. 28, 235–242CrossRefGoogle Scholar
  2. Bolognesi M., Onesti S., Gatti G., Coda A., Ascenzi P., Brunori M. (1989) Aplysia limacina myoglobin: crystallographic analysis at 1.6 ÁA resolution. J. Mol. Biol. 205, 529–544CrossRefGoogle Scholar
  3. Brooks III C.L., Karplus M., Pettitt B.M. (1988) Proteins: A Theoretical Perspective of Dynamics, Structure, and Thermodynamics. Wiley, New YorkGoogle Scholar
  4. Brüger A.T., Niles M. (1993) Computational challenges for macromolecular modeling. In: Lipkowitz K.B., Boyd D.B. (eds.), Reviews in Computational Chemistry, vol 5. VCH Publishers, Wcinheim, pp. 299–335Google Scholar
  5. Creighton, T.E.: Proteins: Structures and Molecular Properties, 2nd edn. Freeman and Company, San Franscisco, CA, New York (1993)Google Scholar
  6. Crippen G.M., Havel T.F. (1988). Distance Geometry and Molecular Conformation. Wiley, New YorkGoogle Scholar
  7. Dong Q., Wu Z. (2002) A linear-time algorithm for solving the molecular distance geometry problem with exact inter-atomic distances. J. Global Optim. 22, 365–375CrossRefGoogle Scholar
  8. Dong Q., Wu Z. (2003) A geometric build-up algorithm for solving the molecular distance geometry problem with sparse distance data. J. Global. Optim. 26, 321–333CrossRefGoogle Scholar
  9. Glunt W., Hayden T.L., Hong S., Wells J. (1990) An alternating projection algorithm for computing the nearest euclidean distance matrix. SIAM J. Mat. Anal. Appl. 11(4): 589–600CrossRefGoogle Scholar
  10. Glunt W., Hayden T.L., Raydan M. (1993) Molecular conformations from distance matrices. J. Comput. Chem. 14(1): 114–120CrossRefGoogle Scholar
  11. Golub G.H., van Loan C.F. (1989) Matrix Computations. Johns Hopkins University Press, Baltimore, MDGoogle Scholar
  12. Havel T.F. (1995) Distance geometry. In: Grant D.M., Harris R.K. (eds.), Encyclopedia of Nuclear Magnetic Resonance. Wiley, New York, pp. 1701–1710Google Scholar
  13. Havel T.F., Snow M.E. (1991) A new method for building protein conformations from sequence alignments with homologues of known structure. J. Mol. Biol. 217, 1–7CrossRefGoogle Scholar
  14. Hendrickson, B.A.: The molecular problem: determining conformation from pairwise distances. Ph.D. thesis, Cornell University, Ithaca, NY (1991)Google Scholar
  15. Hendrickson B.A. (1995) The molecule problem: exploiting structure in global optimization. SIAM J. Optim. 5(4): 835–857CrossRefGoogle Scholar
  16. Huang H.X., Liang Z.A., Pardalos P. (2002) Some Properties for the Euclidean Distance Matrix and Positive Semi-Definite Matrix Completion Problems. Department of Industrial and Systems Engineering, University of FloridaGoogle Scholar
  17. Kearsly A., Tapia R., Trosset M. (1998) Solution of the metric STRESS and SSTRESS problems in multidimensional scaling by Newton’s method. Comput. Stat. 13, 369–396Google Scholar
  18. Kuntz I.D., Thomason J.F., Oshiro C.M. (1993) Distance geometry. In: Oppenheimer N.J., James T.L. (eds) Methods in Enzymology, vol. 177. Academic Press, New York, pp. 159–204Google Scholar
  19. Moré J., Wu Z. (1996a) ε-Optimal solutions to distance geometry problems via global continuation. In: Pardalos P.M., Shalloway D., Xue G. (eds) Global Minimization of Non-Convex Energy Functions: Molecular Conformation and Protein Folding. American Mathematical Society, Providence, RI, pp. 151–168Google Scholar
  20. Moré J. Wu Z.(1996b) Smoothing techniques for macromolecular global optimization. In: Di Pillo G., Gianessi F. (eds) Nonlinear Optimization and Applications. Plenum Press, New York, pp. 297–312Google Scholar
  21. Moré J., Wu Z. (1997a) Global continuation for distance geometry problems. SIAM J. Optim. 7(3): 814–836CrossRefGoogle Scholar
  22. Moré J., Wu Z. (1997b) Issues in large scale global molecular optimization. In: Biegler L., Coleman T., Conn A., Santosa F. (eds) Large Scale Optimization with Applications. Springer-Verlag, Berlin, pp. 99–122Google Scholar
  23. Moré J., Wu Z. (1999) Distance geometry optimization for protein structures. J. Global Optim. 15, 219–234CrossRefGoogle Scholar
  24. Saxe, J. B.: Embeddability of weighted graphs in k-space is strongly NP-hard. In Proc. 17th Allerton Conference in Communications, Control and Computing, pp. 480–489 (1979)Google Scholar
  25. Trosset M. (1998) Applications of multidimensional scaling to molecular conformation. Comput. Sci. Stat. 29, 148–152Google Scholar
  26. Yoon, J., Gad, Y., Wu, Z., Mathematical modeling of protein structure with distance geometry, to appear. In: Yuan, Y., et al. (eds), Numerical Linear Algebra and Optimization, Scientific Press, (2002)Google Scholar

Copyright information

© Springer Science+Business Media B.V. 2006

Authors and Affiliations

  1. 1.Program on Bioinformatics and Computational Biology, Department of MathematicsIowa State UniversityAmesUSA

Personalised recommendations