Journal of Global Optimization

, Volume 37, Issue 3, pp 481–503 | Cite as

Scatter search for chemical and bio-process optimization

  • Jose A. Egea
  • María Rodríguez-Fernández
  • Julio R. Banga
  • Rafael Martí
Original Paper

Abstract

Scatter search is a population-based method that has recently been shown to yield promising outcomes for solving combinatorial and nonlinear optimization problems. Based on formulations originally proposed in 1960s for combining decision rules and problem constraints such as the surrogate constraint method, scatter search uses strategies for combining solution vectors that have proved effective in a variety of problem settings. In this paper, we develop a general purpose heuristic for a class of nonlinear optimization problems. The procedure is based on the scatter search methodology and treats the objective function evaluation as a black box, making the search algorithm context-independent. Most optimization problems in the chemical and bio-chemical industries are highly nonlinear in either the objective function or the constraints. Moreover, they usually present differential-algebraic systems of constraints. In this type of problem, the evaluation of a solution or even the feasibility test of a set of values for the decision variables is a time-consuming operation. In this context, the solution method is limited to a reduced number of solution examinations. We have implemented a scatter search procedure in Matlab (Mathworks, 2004) for this special class of difficult optimization problems. Our development goes beyond a simple exercise of applying scatter search to this class of problems, but presents innovative mechanisms to obtain a good balance between intensification and diversification in a short-term search horizon. Computational comparisons with other recent methods over a set of benchmark problems favor the proposed procedure.

Keywords

Metaheuristics Scatter search Chemical engineering Global optimization Nonlinear dynamic systems 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Abramson, M.A.: Pattern search algorithms for mixed variable general constrained optimization problems. PhD Thesis, Rice University (2002)Google Scholar
  2. 2.
    Bailey J.E. (1998) Mathematical modeling and analysis in biochemical engineering: past accomplishments and future opportunities. Biotechnol. Progr. 14, 8-20CrossRefGoogle Scholar
  3. 3.
    Banga J.R., Balsa-Canto E., Moles C.G., Alonso A.A. (2003a). Improving food processing using modern optimization methods. Trends Food Sci Technol. 14, 131-144CrossRefGoogle Scholar
  4. 4.
    Banga J.R., Moles C.G., Alonso A.A. (2003b). Global optimization of bioprocesses using stochastic and hybrid methods. In: Floudas C.A., Pardalos P.M. (eds.) Frontiers In Global Optimization. Nonconvex Optimization and Its Applications, vol. 74. Kluwer Academic Publishers, Hingham, MA, USA, pp 45-70Google Scholar
  5. 5.
    Biegler L.T., Grossmann I.E. (2004). Retrospective on optimization. Comput. Chem. Eng. 28(8): 1169-1192Google Scholar
  6. 6.
    Boender C.G.E., Rinooy Kan A.H.G., Timmer G.T., Stougie L. (1982). A stochastic method for global optimization. Math. Program. 22, 125-140CrossRefGoogle Scholar
  7. 7.
    Box G.E.P., Hunter W.G., MacGregor J.F., Erjavec J. (1973). Some problems associated with the analysis of multiresponse data. Technometrics. 15, 33-51CrossRefGoogle Scholar
  8. 8.
    Csendes T. (1988). Nonlinear parameter estimation by global optimization–efficiency and reliability. Acta Cybernet. 8(4): 361-370Google Scholar
  9. 9.
    Dennis J.E., Gay D.M., Welsch R.E. (1981). Algorithm 573: NL2SOL–An adaptive nonlinear least-squares algorithm. Acm. Trans. Math. Soft. 7, 369-383CrossRefGoogle Scholar
  10. 10.
    Dolan, E.D., Moré, J.J., Munson, T.S.: Benchmarking optimization problems with COPS 3.0. Technical Report ANL/MCS-TM-273, Argonne National Laboratory (2004)Google Scholar
  11. 11.
    Finkel, D.E., Kelley, C.T.: An Adaptive Restart Implementation of DIRECT. Technical Report CRSC-TR04–30, NC State University (2004)Google Scholar
  12. 12.
    Floudas C.A., Akrotirianakis I.G., Caratzoulas S., Meyer C.A., Kallrath J. (2005). Global optimization in the 21st century: advances and challenges. Comput. Chem. Eng. 29(6): 1185-1202CrossRefGoogle Scholar
  13. 13.
    Gill, P.E., Murray, W., Saunders, M.A., Wight, M.H.: User’s guide for npsol 5.0: A FORTRAN package for nonlinear programming. Technical Report SOL 86–1, Systems Optimization Laboratory, Stanford University (1998)Google Scholar
  14. 14.
    Gill P.E., Murray W., Saunders M.A. (2002). SNOPT: An SQP algorithm for large-scale constrained optimization. SIAM J. Optim 12(4): 979-1006CrossRefGoogle Scholar
  15. 15.
    Glover F. (1977). Heuristics for integer programming using surrogate constraints. Decis. Sci. 8, 156-166CrossRefGoogle Scholar
  16. 16.
    Glover F. (1994). Tabu search for nonlinear and parametric optimization (with links to genetic algorithms). Discrete Appl. Math. 49, 231-255CrossRefGoogle Scholar
  17. 17.
    Glover F. (1998). A template for scatter search and path relinking. In: Hao J.K., Lutton E., Ronald E., Schoenauer M., Snyers D. (eds.) Artificial Evolution, Lecture Notes in Computer Science vol. 1363. Springer Verlag, Berlin, pp 13-54Google Scholar
  18. 18.
    Holmström K., Edvall M.M. (2004). The Tomlab optimization environment. In: Kallrath J., Basf A.B. (eds.) Modeling Languages in Mathematical Optimization. Kluwer Academic Publishers, Dordrecht, pp 369-378Google Scholar
  19. 19.
    Jones D.R. (2001). DIRECT global optimization algorithm. In: Floudas C.A., Pardalos P.M. (eds.) Encyclopedia of Optimization. Kluwer Academic Publishers, Dordrecht, pp 431-440CrossRefGoogle Scholar
  20. 20.
    Laguna M., Martí R. (2002). The OptQuest callable library. In: Voss S., Woodruff D. (eds.) Optimization Software Class Libraries. Kluwer Academic Publishers, Boston, pp 193-218Google Scholar
  21. 21.
    Laguna M., Martí R. (2003). Scatter Search: Methodology and Implementations in C. Kluwer Academic Publishers, BostonGoogle Scholar
  22. 22.
    Laguna M., Martí R. (2005). Experimental testing of advanced scatter search designs for global optimization of multimodal functions. J. Global Optim. 33, 235-255CrossRefGoogle Scholar
  23. 23.
    Mathworks, Matlab 6.5R13, Mathworks, Natick, MA (2004)Google Scholar
  24. 24.
    Michalewicz Z., Logan T.D. (1994). Evolutionary operators for continuous convex parameter spaces. In: Sebald A.V., Fogel L.J. (eds.) Proceedings of the 3rd Annual Conference on Evolutionary Programming. World Scientific Publishing, River Edge, pp 84-97Google Scholar
  25. 25.
    Moles C.G., Gutierrez G., Alonso A.A., Banga J.R. (2003a). Integrated process design and control via global optimization: a wastewater treatment plant case study. Chem. Eng. Res. Des. 81(5): 507-517CrossRefGoogle Scholar
  26. 26.
    Moles C.G., Mendes P., Banga J.R. (2003b). Parameter estimation in biochemical pathways: a comparison of global optimization methods. Genome Res. 13(11): 2467-2474CrossRefGoogle Scholar
  27. 27.
    Panier E., Tits A.L. (1993). On combining feasibility, descent and superlinear convergence in inequality constrained optimization. Math. Program. 59, 261-276CrossRefGoogle Scholar
  28. 28.
    Runarsson T.P., Yao X. (2000). Stochastic ranking for constrained evolutionary optimization. IEEE Trans. Evol. Comput. 4, 284-294CrossRefGoogle Scholar
  29. 29.
    Runarsson T. P., Yao X. (2005). Search biases in constrained evolutionary optimization. IEEE Trans. Syst. Man Cybern. 35, 233-243CrossRefGoogle Scholar
  30. 30.
    Shimizu K. (1996). A tutorial review on bioprocess systems engineering. Comput. Chem. Eng. 20, 915-941CrossRefGoogle Scholar
  31. 31.
    Storn R., Price K. (1997). Differential evolution—a simple and efficient heuristic for global optimization over continuous spaces. J. Global Optim. 11, 341-359CrossRefGoogle Scholar
  32. 32.
    Ugray Z., Lasdon L., Plummer J., Glover F., Kelly J., Martí R. (2005). A multistart scatter search heuristic for smooth NLP and MINLP problems. In: Rego C., Alidaee B.(eds.) Metaheuristic Optimization via Memory and Evolution: Tabu Search and Scatter Search. Kluwer Academic Publishers, Dordrecht, pp 25-58CrossRefGoogle Scholar
  33. 33.
    Wächter A., Biegler L.T. (2006). On the implementation of a primal-dual interior point filter line search algorithm for large-scale nonlinear programming. Math. Program. 106(1): 25-57CrossRefGoogle Scholar
  34. 34.
    Ye, Y.: Interior Algorithms for Linear, Quadratic and Linearly Constrained Non-linear programing. Phd Thesis, Stanford University (1987)Google Scholar
  35. 35.
    Yuret, D.: From Genetic Algorithms to Efficient Optimization. A.I. Technical Report No. 1569. Massachusetts Insitute of Technology (1994)Google Scholar

Copyright information

© Springer Science+Business Media, Inc. 2006

Authors and Affiliations

  • Jose A. Egea
    • 1
  • María Rodríguez-Fernández
    • 1
  • Julio R. Banga
    • 1
  • Rafael Martí
    • 2
  1. 1.Process Engineering GroupInstituto de Investigaciones Marinas (C.S.I.C.)VigoSpain
  2. 2.Departamento de Estadística e Investigación OperativaUniversitat de ValènciaBurjassot (Valencia)Spain

Personalised recommendations