Journal of Global Optimization

, Volume 38, Issue 2, pp 215–236 | Cite as

Multi-dimensional pruning from the Baumann point in an Interval Global Optimization Algorithm

Original Paper

Abstract

A new pruning method for interval branch and bound algorithms is presented. In reliable global optimization methods there are several approaches to make the algorithms faster. In minimization problems, interval B&B methods use a good upper bound of the function at the global minimum and good lower bounds of the function at the subproblems to discard most of them, but they need efficient pruning methods to discard regions of the subproblems that do not contain global minimizer points. The new pruning method presented here is based on the application of derivative information from the Baumann point. Numerical results were obtained by incorporating this new technique into a basic Interval B&B Algorithm in order to evaluate the achieved improvements.

Keywords

Interval arithmetic Branch-and-bound method Global optimization Pruning test 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Baumann E. (1988) Optimal centered forms. BIT 28(1): 80–87CrossRefGoogle Scholar
  2. 2.
    Casado L.G., García I., Csendes T. (2000) A new multisection technique in interval methods for global optimization. Computing 65(3): 263–269CrossRefGoogle Scholar
  3. 3.
    Csendes T., Ratz D. (1997) Subdivision direction selection in interval methods for global optimization. SIAM J. Numerical Anal. 34: 922–938CrossRefGoogle Scholar
  4. 4.
    Dixon L., Szego G. (eds) (1975) Towards Global Optimization. North-Holland Publishing Company, AmsterdamGoogle Scholar
  5. 5.
    Dixon L., Szego G. (eds) (1978) Towards Global Optimization 2. North-Holland Publishing Company, AmsterdamGoogle Scholar
  6. 6.
    Hammer R., Hocks M., Kulisch U., Ratz D. (1995) C++ Toolbox for Verified Computing I: Basic Numerical Problems: Theory, Algorithms, and Programs. Springer-Verlag, Berlin, GermanyGoogle Scholar
  7. 7.
    Henriksen, T., Madsen, K.: Use of a depth-first strategy in parallel Global Optimization. Tech. Rep. 92-10, Institute for Numerical Analysis, Technical University of Denmark (1992)Google Scholar
  8. 8.
    Hofschuster W., Krämer W. (2004) C-XSC 2.0: A C++ library for extended scientific computing. Numerical software with result verification. Lect. Notes Comput. Sci. 2991, 15–35Google Scholar
  9. 9.
    Kearfott R.B. (1996) Rigorous Global Search: Continuous Problems. Kluwer Academic Publishers, Dordrecht HollandGoogle Scholar
  10. 10.
    Knüppel O. (1994) PROFIL/BIAS—a fast interval library. Computing 53, 277–287CrossRefGoogle Scholar
  11. 11.
    Martínez, J.A., Casado, L.G., García, I., Tóth, B.: Amigo: advanced multidimensional interval analysis global optimization algorithm. In: Floudas, C., Pardalos, P. (eds.) Nonconvex Optimization and Applications Series. Frontiers in Global Optimization, vol. 74, pp. 313–326. Kluwer Academic Publishers (2004)Google Scholar
  12. 12.
    Moore R. (1966) Interval Analysis. Prentice-Hall, New Jersey USAGoogle Scholar
  13. 13.
    Neumaier A. (1990) Interval Methods for Systems of Equations. Cambridge University Press, CambridgeGoogle Scholar
  14. 14.
    Neumaier, A.: Test functions. World Wide Web, http://www.mat.univie.ac.at/~vpk/ math/funcs.html (1999). Used to compare stochastic methods for Global OptimizationGoogle Scholar
  15. 15.
    Ratschek H., Rokne J. (1988) New Computer Methods for Global Optimization. Ellis Horwood Ltd., Chichester EnglandGoogle Scholar
  16. 16.
    Ratz D.(1998) Automatic Slope Computation and its Application in Nonsmooth Global Optimization. Shaker Verlag, Aachen GermanyGoogle Scholar
  17. 17.
    Ratz D., Csendes T. (1995) On the selection of subdivision directions in interval branch and bound methods for global optimization. J. Global Optimization 7, 183–207CrossRefGoogle Scholar
  18. 18.
    Törn A., Žilinskas A. (1989) Global Optimization, vol 3350. Springer-Verlag, Berlin GermanyGoogle Scholar
  19. 19.
    Walster G., Hansen, E., Sengupta, S.: Test results for global optimization algorithm. SIAM Numerical Optimization 1984 pp. 272–287 (1985)Google Scholar

Copyright information

© Springer Science+Business Media B.V. 2006

Authors and Affiliations

  1. 1.Departamento de Estadística e Investigación OperativaUniversidad de MurciaMurciaSpain
  2. 2.Departamento de Arquitectura de Computadores y ElectrónicaUniversidad de AlmeríaAlmeríaSpain

Personalised recommendations