Journal of Global Optimization

, Volume 37, Issue 4, pp 557–569 | Cite as

A robust algorithm for quadratic optimization under quadratic constraints

  • Hoang TuyEmail author
  • N. T. Hoai-Phuong
Original Paper


Most existing methods of quadratically constrained quadratic optimization actually solve a refined linear or convex relaxation of the original problem. It turned out, however, that such an approach may sometimes provide an infeasible solution which cannot be accepted as an approximate optimal solution in any reasonable sense. To overcome these limitations a new approach is proposed that guarantees a more appropriate approximate optimal solution which is also stable under small perturbations of the constraints.


Nonconvex global optimization Quadratic optimization under quadratic constraints Branch-reduce-and-bound successive incumbent transcending algorithm Essential optimal solution Robust solution 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Al-Khayyal F.A., Larsen C., van Voorhis T. (1995): A relaxation method for nonconvex quadraticaly constrained quadratic programs. J. Glob. Optim. 6, 215–230CrossRefGoogle Scholar
  2. 2.
    Audet C., Hansen P., Jaumard B., Savard G. (2000): A branch and cut algorithm for nonconvex quadratically constrained quadratic programming. Math. Program. Ser. A 87, 131–152Google Scholar
  3. 3.
    Dembo R.S. (1976): A set of geometric programming test problems and their solutions. Math. Program. 10, 192–213CrossRefGoogle Scholar
  4. 4.
    Floudas C.A. (1999): Deterministic Global Optimization. Kluwer, DordrechtGoogle Scholar
  5. 5.
    Floudas C.A. et al. (1999): Handbook of Test Problems in Local and Global Optimization. Kluwer, DordrechtGoogle Scholar
  6. 6.
    Horst R., Tuy H. (1996): Global Optimization: Deterministic Approaches, 3rd edn. Springer, BerlinGoogle Scholar
  7. 7.
    Lasserre J. (2001): Global optimization with polynomials and the problem of moments. SIAM J. Optim. 11, 796–817CrossRefGoogle Scholar
  8. 8.
    Phong T.Q., Tao P.D., Hoai An L.T. (1995): A method for solving d.c. programming problems. application to fuel mixture nonconvex optimization problem. J. Glob. Optim. 6, 87–105CrossRefGoogle Scholar
  9. 9.
    Sherali H.D., Tuncbilek C.H. (1992): A global opimization algorithm for polynomial programming using a reformulation-linearization technique. J. Glob. Optim. 2, 101–112CrossRefGoogle Scholar
  10. 10.
    Sherali H.D., Tuncbilek C.H. (1995): A reformulation-convexification approach for solving nonconvex quadratic programming problems. J. Glob. Optim. 7, 1–31CrossRefGoogle Scholar
  11. 11.
    Shor N.Z., Stetsenko S.I. (1989): Quadratic Extremal Problems and Nondifferentiable Optimization. Naukova Dumka, Kiev in RussianGoogle Scholar
  12. 12.
    Shor N.Z. (1998): Nondifferentiable Optimization and Polynomial Problems. Kluwer, DordrechtGoogle Scholar
  13. 13.
    Tuy H. (1998): Convex Analysis and Global Optimization. Kluwer, DordrechtGoogle Scholar
  14. 14.
    Tuy H. (2000): Monotonic optimization: problems and solution approaches. SIAM J. Optim. 11(2): 464–494CrossRefGoogle Scholar
  15. 15.
    Tuy H., Al-Khayyal F., Thach P.T. (2005): Monotonic optimization: branch and cut methods. In: Audet C., Hansen P., Savard G. (eds). Essays and Surveys on Global Optimization. Springer, Berlin, pp. 39–78CrossRefGoogle Scholar
  16. 16.
    Tuy H. (2005): Robust solution of nonconvex global optimization problems. J. Glob. Optim. 32, 307–323CrossRefGoogle Scholar
  17. 17.
    Tuy H. (2005): Polynomial optimization: a robust approach. Pac. J. Optim. 1, 357–374Google Scholar
  18. 18.
    Tuy H., Minoux M., Hoai-Phuong N.T. (2006): Discrete monotonic optimization with application to a discrete location problem. SIAM J. Optim. 17, 78–97CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2006

Authors and Affiliations

  1. 1.Institute of MathematicsHanoiVietnam

Personalised recommendations