Journal of Global Optimization

, Volume 37, Issue 3, pp 449–465

Uniqueness and Hölder continuity of the solution to multivalued equilibrium problems in metric spaces

Original Paper

Abstract

Multivalued equilibrium problems in general metric spaces are considered. Uniqueness and Hölder continuity of the solution are established under Hölder continuity and relaxed Hölder-related monotonicity assumptions. The assumptions appear to be weaker and the inclusion to be properly stronger than that of the recent results in the literature. Furthermore, our theorems include completely some known results for variational inequalities in Hilbert spaces, which were demonstrated via geometrical techniques based on the orthogonal projection in Hilbert spaces and the linearity of the canonical pair \(\langle .,.\rangle\).

Keywords

Metric spaces Multivalued equilibrium problems Hölder properties Variational inequalities Fixed point and coincidence point problems Vector optimization 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Anh L.Q., Khanh P.Q. (2004) Semicontinuity of the solution set of parametric multivalued vector quasiequilibrium problems. J. Math. Anal. Appl. 294, 699–711CrossRefGoogle Scholar
  2. Anh, L.Q., Khanh, P.Q. On the stability of the solution sets of general multivalued vector quasiequilibrium problems. J. Optim. Theory Appl. in press (2006)Google Scholar
  3. Anh L.Q., Khanh P.Q. (2006) On the Hölder continuity of solutions to parametric multivalued vector equilibrium problems. J. Math. Anal. Appl. 321, 308–315CrossRefGoogle Scholar
  4. Ansari Q.H., Konnov I.V., Yao J.C. (2001) Existence of a solution and variational principles for vector equilibrium problems. J. Optim. Theory Appl. 110, 481–492CrossRefGoogle Scholar
  5. Aubin J.P., Frankowska H. (1990) Set-Valued Analysis. Birkhäuser, BostonGoogle Scholar
  6. Bianchi M., Schaible S. (1996) Generalized monotone bifunctions and equilibrium problems. J. Optim. Theory Appl. 90, 31–43CrossRefGoogle Scholar
  7. Bianchi M., Hadjisavvas N., Schaible S. (1997) Vector equilibrium problems with generalized monotone bifunctions. J. Optim. Theory Appl. 92, 527–542CrossRefGoogle Scholar
  8. Bianchi M., Pini R. (2003) A note on stability for parametric equilibrium problems. Oper. Res. Lett. 31, 445–450CrossRefGoogle Scholar
  9. Blum E., Oettli W. (1994) From optimization and variational inequalities to equilibrium problems. Math. Stud. 63, 123–145Google Scholar
  10. Chadli O., Chiang Y., Yao J.C. (2002) Equilibrium problems with lower and upper bounds. Appl. Math. Lett. 15, 327–331CrossRefGoogle Scholar
  11. Chadli O., Riahi H. (2000) On generalized vector equilibrium problems. J. Glob. Optim. 16, 33–41CrossRefGoogle Scholar
  12. Congjun, Z. A class of equilibrium problems with lower and upper bound. Nonlinear Analy. (2006), in pressGoogle Scholar
  13. Hai, N.X., Khanh, P.Q. Existence of solutions to general quasiequilibrium problems and applications. J. Optim. Theory Appl. (2006), in pressGoogle Scholar
  14. Hai N.X., Khanh P.Q. (2006) Systems of multivalued quasiequilibrium problems. Adv. Nonlinear Variational Inequalities 9, 109–120Google Scholar
  15. Khanh P.Q., Luc D.T., Tuan N.D. (2006) Local uniqueness of solutions for equilibrium problems. Adv Nonlinear Variational Inequalities 9, 1–11Google Scholar
  16. Kluge R. (1979) Nichtlineare Variationsungleichungen und Extremalaufgaben. Veb Deutscher Verlag der Wissenschaften, BerlinGoogle Scholar
  17. Lin L.J., Ansari Q.H., Wu J.H. (2003) Geometric properties and coincidence theorems with applications to generalized vector equilibrium problems. J. Optim. Theory Appl. 117, 121–137CrossRefGoogle Scholar
  18. Mansour M.A., Riahi H. (2005) Sensitivity analysis for abstract equilibrium problems. J. Math. Anal. Appl. 306, 684–691CrossRefGoogle Scholar
  19. Muu L.D. (1984) Stability property of a class of variational inequalities. Math. Operationsforschung Statistik, Ser. Optim. 15, 347–351Google Scholar
  20. Noor M.A., Oettli W. (1994) On general nonlinear complementarity problems and quasiequilibria. Le Mathematiche 49, 313–331Google Scholar
  21. Rockafellar R. (1970) On the maximal monotonicity of sums of nonlinear monotone operators. Trans. Am. Math. Soc. 149, 75–88CrossRefGoogle Scholar
  22. Yen N.D. (1995) Hölder continuity of solutions to parametric variational inequalities. Appl. Math. Optim. 31, 245–255CrossRefGoogle Scholar
  23. Yen N.D., Lee G.M. (1997) Solution sensitivity of a class of variational inequalities. J. Math. Anal. Appl. 215, 48–55CrossRefGoogle Scholar
  24. Zeidler E. (1990) Nonlinear Functional Analysis and its Applications. 2nd edn. Springer, BerlinGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2006

Authors and Affiliations

  1. 1.Department of Mathematics, Teacher CollegeCantho UniversityCanthoVietnam
  2. 2.Department of MathematicsInternational University of Hochiminh CityHochiminh CityVietnam

Personalised recommendations