Journal of Global Optimization

, Volume 36, Issue 3, pp 401–423 | Cite as

A New Duality Approach to Solving Concave Vector Maximization Problems

  • Luc Dinh TheEmail author
  • Phong Thai Quynh
  • Volle Michel


We introduce a special class of monotonic functions with the help of support functions and polar sets, and use it to construct a scalarized problem and its dual for a vector optimization problem. The dual construction allows us to develop a new method for generating weak efficient solutions of a concave vector maximization problem and establish its convergence. Some numerical examples are given to illustrate the applicability of the method.


Duality Polar set Multiobjective problem Weak efficient solution 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Attouch H. (1984). Variational convergence for functions and operators. Pitman, LondonGoogle Scholar
  2. 2.
    Benson H.P. (1998). An outer approximation algorithm for generating all efficient extreme points in the outcome set of a multiple objective linear programming problem. J. Global Optim. 13:1–24CrossRefGoogle Scholar
  3. 3.
    Benson H.P., Sun E. (2000). Outcome space partition of the weight set in multiobjective linear programming. J. Optim. Theory Appl. 105:17–36CrossRefGoogle Scholar
  4. 4.
    Chen P.C., Hansen P., Jaumard B. (1991). On-line and off-line vertex enumeration by adjacency lists. Operat. Res. Lett. 10:403–409CrossRefGoogle Scholar
  5. 5.
    Das I., Dennis J.E. (1998). Normal-boundary intersection: a new method for generating the Pareto surface in nonlinear multicriteria optimization problems. SIAM J. Optimi. 8:631–657CrossRefGoogle Scholar
  6. 6.
    Horst R., Tuy H. (1996). Global optimization. Springer-Verlag, BerlinGoogle Scholar
  7. 7.
    Holmes R.B. (1975). Geometric functional analysis and its applications. Springer, BerlinGoogle Scholar
  8. 8.
    Jahn J. (2004). Vector Optimization: theory, applications, and extensions. Springer, BerlinGoogle Scholar
  9. 9.
    Kim N.T.B., Luc D.T. (2000). Normal cones to a polyhedral convex set and generating efficient faces in linear multiobjective programming. Act. Math. Vietnamica 25:101–124Google Scholar
  10. 10.
    Luc, D.T.: On scalarizing method in vector optimization. In: Fandel, G., Grauer, M., Kurzhanski, A., Wiersbicki, A.P. (eds.) Large-Scale Modeling and Interactive Decision Analysis, Proceedings, Eisenach 1985. LNEMS 273, 46–51 (1986)Google Scholar
  11. 11.
    Luc D.T. (1987). Scalarization of vector optimization problems. J. Optim. Theory Appl. 55:85–102CrossRefGoogle Scholar
  12. 12.
    Luc D.T. (1989). Theory of vector optimization. LNEMS 319. Springer-Verlag, GermanyGoogle Scholar
  13. 13.
    Luc D.T., Jahn J. (1992). Axiomatic approach to duality in vector optimization. Numer. Funct. Anal. Optim. 13:305–326CrossRefGoogle Scholar
  14. 14.
    Luc D.T., Phong T.Q., Volle M. (2005). Scalarizing functions for generating the weakly efficient solution set in convex mutiobjective problems. SIAM J. Optim. 15:987–1001CrossRefGoogle Scholar
  15. 15.
    Miettinen K. (1999). Nonlinear Multiobjective Optimization. Kluwer Academic Publishers, BostonGoogle Scholar
  16. 16.
    Rakowska J., Hafka R.T., Watson L.T. (1991). Tracing the efficient curve for multi-objective control-structure optimization. Comput. Syst. Eng. 2:461–471CrossRefGoogle Scholar
  17. 17.
    Singer I. (1979). A Fenchel-Rockafellar type duality theorem for maximization. Bull. Australian Math. Soc. 20:193–198CrossRefGoogle Scholar
  18. 18.
    Stewart T.J., van den Honert R.C. (eds) (1997). Trends in Multicriteria Decision Making, Lectures Notes in Economics and Mathematical Systems vol. 465. Springer, BerlinGoogle Scholar
  19. 19.
    Toland J. (1979). A duality principle for nonconvex optimization and the calculus of variations. Arch. Rational Mech. Anal. 71: 41–61CrossRefGoogle Scholar
  20. 20.
    Yu P.L. (1985). Multiple-criteria decision making: concepts, techniques and extensions. Plenum Press, New YorkGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2006

Authors and Affiliations

  • Luc Dinh The
    • 1
    Email author
  • Phong Thai Quynh
    • 1
  • Volle Michel
    • 1
  1. 1.Department of MathematicsUniversity of AvignonAvignonFrance

Personalised recommendations