Journal of Global Optimization

, Volume 35, Issue 1, pp 53–69 | Cite as

Convex- and Monotone-Transformable Mathematical Programming Problems and a Proximal-Like Point Method

  • J. X. Da Cruz Neto
  • O. P. Ferreira
  • L. R. Lucambio Pérez
  • S. Z. Németh


The problem of finding the singularities of monotone vectors fields on Hadamard manifolds will be considered and solved by extending the well-known proximal point algorithm. For monotone vector fields the algorithm will generate a well defined sequence, and for monotone vector fields with singularities it will converge to a singularity. It will also be shown how tools of convex analysis on Riemannian manifolds can solve non-convex constrained problems in Euclidean spaces. To illustrate this remarkable fact examples will be given.


Manifold Vector Field Riemannian Manifold Euclidean Space Programming Problem 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Avriel, M. 1976Nonlinear ProgrammingPrentice-Hall, Inc.Englewood Cliffs, NJGoogle Scholar
  2. 2.
    Burachik, R.S., Graña Drummond, L.M., Iusem, A.N., Svaiter, B.F. 1995Full convergence of the steepest descent method with inexact line searchesOptimization32137146Google Scholar
  3. 3.
    Carmo, M.P. 1992Riemannian GeometryBirkhaüserBostonGoogle Scholar
  4. 4.
    Cruz Neto, J.X., Ferreira, O.P., Lucambio Pérez, L.R. 2002Contribution to the study of monotone vector fieldsActa Mathematica Hungarica94307320CrossRefGoogle Scholar
  5. 5.
    Ferreira, O.P., Oliveira, P.R. 2002Proximal point algorithm on Riemannian manifoldOptimization51257270Google Scholar
  6. 6.
    Iusem, A.N., Svaiter, B.F. 1995A proximal regularization of the steepest descent methodRecherche opérationnelle/Operations Research29123130Google Scholar
  7. 7.
    Németh, S.Z. 1999Geodesic monotone vector fieldsLobachevskii Journal of Mathematics51328Google Scholar
  8. 8.
    Németh, S.Z. 1999Monotone vector fieldsPublicationes Mathematicae Debrecen54437449Google Scholar
  9. 9.
    Németh, S.Z. 1999Monotonicity of the complementarity vector field of a nonexpansive mapActa Mathematica Hungarica84189197CrossRefGoogle Scholar
  10. 10.
    Nesterov, Y.E., Todd, M.J. 2002On the Riemannian geometry defined by self-concordant barriers and interior-point methodsFound. Comp. Math.2333361CrossRefGoogle Scholar
  11. 11.
    Ortega, J.M., Rheimboldt, W.C. 1970Interactive Solution of Nonlinear Equations in Several VariablesAcademic PressNew YorkGoogle Scholar
  12. 12.
    Rockafellar, R.T. 1976Monotone operators and the proximal point algorithmSIAM Journal of Control and Optimization14877898CrossRefGoogle Scholar
  13. 13.
    Rapcsák, T. 1996Geodesic convexity on R n ++Optimization37341355Google Scholar
  14. 14.
    Rapcsák, T. 1998Variable metric methods along geodesicsGiannessi, F.Komlósi, S.Rapcsak, T. eds. New trends in Mathematical ProgrammingKluwer Academic PublishersDordrechtGoogle Scholar
  15. 15.
    Rapcsák, T. 1997Smooth Nonlinear Optimization in RnKluwer Academic PublishersDordrechtGoogle Scholar
  16. 16.
    Sakai T. (1996), Riemannian Geometry, Translations of Mathematical Monographs vol. 149, American Mathematical Society, Providence, R.I.Google Scholar
  17. 17.
    Udrişte, C. 1994Convex Functions and Optimization Methods on Riemannian ManifoldsKluwer Academic PublishersDordrechtMathematics and its Applications vol. 297Google Scholar
  18. 18.
    Udrişte, C. 1996Riemannian convexity in programming (II)Balkan Journal of Geometry and Its applications199109Google Scholar
  19. 19.
    Udrişte, C. 1996Sufficient decrease principle on Riemannian manifoldsBalkan Journal of Geometry and Its applications1111123Google Scholar
  20. 20.
    Tsagas, Gr., Udrişte, C. 2002Vector Fields and Their ApplicationsGeometry Balkan PressBucharestGoogle Scholar

Copyright information

© Springer 2006

Authors and Affiliations

  • J. X. Da Cruz Neto
    • 1
  • O. P. Ferreira
    • 2
  • L. R. Lucambio Pérez
    • 2
  • S. Z. Németh
    • 3
  1. 1.DMUniversidade Federal do PiauíTeresinaBR
  2. 2.IMEUniversidade Federal de GoiásGoiâniaBR
  3. 3.Computer and Automation InstituteHungarian Academy of SciencesBudapestHungary

Personalised recommendations