Advertisement

Journal of Global Optimization

, Volume 35, Issue 2, pp 197–213 | Cite as

Variational Methods in Convex Analysis

  • Jonathan M. BorweinEmail author
  • Qiji J. Zhu
Article

Abstract

We use variational methods to provide a concise development of a number of basic results in convex and functional analysis. This illuminates the parallels between convex analysis and smooth subdifferential theory.

Keywords

convex analysis fenchel duality functional analysis sandwich theorem variational methods 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Borwein, J.M. 1981Convex relations in analysis and optimizationSchaible, S.Ziemba, W.T. eds. Generalized Concavity in Optimization and EconomicsAcademic PressNew YorkGoogle Scholar
  2. 2.
    Borwein, J.M. 1986Stability and regular points of inequality systemsJornal of Optimization Theory and Applications48952Google Scholar
  3. 3.
    Borwein, J.M. (2006), Maximal monotonicity via convex analysis, to appear in PAMS.Google Scholar
  4. 4.
    Borwein, J.M. (2006), Maximal monotonicity via convex analysis, J. Convex Analysis, in press.Google Scholar
  5. 5.
    Borwein, J.M., Lewis, A.S. 2000Convex Analysis and Nonlinear Optimization: Theory and ExamplesCMS Springer-Verlag Books, Springer-VerlagNew YorkGoogle Scholar
  6. 6.
    Borwein, J.M., Zhu, Q.J. 1999A survey of subdifferential calculus with applicationsNonlinear Analysis, TMA38687773CrossRefGoogle Scholar
  7. 7.
    Borwein, J.M., Zhu, Q.J. 2005Techniques of Variational AnalysisCMS Springer-Verlag Books, Springer-VerlagNew YorkGoogle Scholar
  8. 8.
    Clarke, F.H, Ledyaev, Yu.S. 1994Mean value inequalitiesProc. Amer, Math. Soc12210751083CrossRefGoogle Scholar
  9. 9.
    Ekeland, I. 1974On the variational principleJ. Math. Anal. Appl47324353CrossRefGoogle Scholar
  10. 10.
    Fitzpatrick, S. (1988), Representing monotone operators by convex functions. Work-shop/Miniconference on Functional Analysis and Optimization (Canberra, 1988), Proc. Centre Math. Anal. Austral. Nat. Univ., 20, Austral. Nat. Univ., Canberra, pp. 59–65.Google Scholar
  11. 11.
    Jameson, G.J.O. 1974Topology and Normed SpacesChapman and HallNew YorkGoogle Scholar
  12. 12.
    Ledyaev, Yu. S., Zhu, Q.J. 1999Implicit multifunction theoremsSet-Valued Analysis7209238CrossRefGoogle Scholar
  13. 13.
    Pshenichnii, B. 1971Necessary Conditions for an ExtremumMarcel DekkerNew YorkGoogle Scholar
  14. 14.
    Reich, S. and Simons, S. (2004), Fenchel duality, Fitzpatrick functions and the Kirszbraun-Valentine extension theorem, preprint.Google Scholar
  15. 15.
    Rockafellar, R.T. 1970Convex AnalysisPrinceton University PressPrinceton, NJGoogle Scholar
  16. 16.
    Rockafellar, R.T. 1970On the maximality of sums of nonlinear monotone operatorsTrans. Amer. Math, Soc1497588CrossRefGoogle Scholar
  17. 17.
    Simons, S. 1998Minimax and MonotonicitySpringer-VerlagBerlinLecture Notes in Mathematics, 1693Google Scholar
  18. 18.
    Simons, S., (2003), “A new version of the Hahn-Banach theorem,” www.math.ucsb. edu/simons/preprints/.Google Scholar
  19. 19.
    Simons, S., Zalinescu, C.A. 2004New Proof for Rockafellar’s Characterization of Maximal MonotonicityProc Amer. Math. Soc13229692972CrossRefGoogle Scholar
  20. 20.
    Zhu, Q.J. 1998The equivalence of several basic theorems for subdifferentialsSet- Valued Analysis6171185CrossRefGoogle Scholar

Copyright information

© Springer 2006

Authors and Affiliations

  1. 1.Faculty of Computer ScienceDalhousie UniversityHalifaxCanada
  2. 2.Department of MathematicsWestern Michigan UniversityKalamazooUSA

Personalised recommendations