Journal of Global Optimization

, Volume 35, Issue 1, pp 85–101 | Cite as

A Numerical Approach for Solving Some Convex Maximization Problems

Article

Abstract

We are concerned with concave programming or the convex maximization problem. In this paper, we propose a method and algorithm for solving the problem which are based on the global optimality conditions first obtained by Strekalovsky (Soviet Mathematical Doklady, 8(1987)). The method continues approaches given in (Journal of global optimization, 8(1996); Journal of Nolinear and convex Analyses 4(1)(2003)). Under certain assumptions a convergence property of the proposed method has been established. Some computational results are reported. Also, it has been shown that the problem of finding the largest eigenvalue can be found by the proposed method.

Keywords

algorithm concave programming global maximizer global optimization simple set 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Auslender, A. 1976Optimisation: Méthodes NumériquesMassonParisGoogle Scholar
  2. 2.
    Calamai, P.H., Vincente, L.N., Júdice, J.J. 1993A new technique for generating quadratic programming test problemsMathematical Programming61215231CrossRefGoogle Scholar
  3. 3.
    Enkhbat, R. 1996An algorithm for maximizing a convex function over a simple setJournal of Global Optimization8379391Google Scholar
  4. 4.
    Enkhbat, R., Ibaraki, T. 2003On the maximization and minimization of a quasiconvex functionJournal of Nonlinear and Convex Analyses44376Google Scholar
  5. 5.
    Floudas, C.A., Pardalos, P.M.,  et al. 1999Handbook of the Global Optimization Test ProblemsKluwer Academic PublishersDordrechtGoogle Scholar
  6. 6.
    Fedorenko, R.P. 1976Approximate Solution of Optimal Control ProblemsNaukaMoscowGoogle Scholar
  7. 7.
    Hearn, D.W. 1982The gap function of a convex programOperations Research Letters16771CrossRefGoogle Scholar
  8. 8.
    Horst, R., Tuy, H. 1990Global Optimization(Deterministic Approaches)SpringerBerlinGoogle Scholar
  9. 9.
    Horst, R., Pardalos, P.M. 1995Handbook of Global OptimizationKluwer Academic PublishersLondonGoogle Scholar
  10. 10.
    Nefedov, V.N. 1987Finding the global maximum of a function of several variables on a set given by inequality constraintsJournal of Numerical Mathematics and Mathematical Physics273551Google Scholar
  11. 11.
    Pardalos P.M. and Rosen, J.B. (1987), Constrained Global Optimization: Algorithms and Applications, Springer- Verlag Lecture Notes in Computer Science, Berlin.Google Scholar
  12. 12.
    Pardalos, P.M., Rosen, J.B. 1986Methods for global concave minimization: A bibliographic surveySIAM Review28367379CrossRefGoogle Scholar
  13. 13.
    Rockafellar Tyrrell, R. 1997Convex AnalysisPrinceton University PressPrinceton, NJGoogle Scholar
  14. 14.
    Strekalovsky, A.S. 1987On the global extremum problemSoviet Mathematical Doklady29210621066Google Scholar
  15. 15.
    Tuy, H. 1964Concave programming under linear constraintsSoviet Math.Doklady1593235Google Scholar
  16. 16.
    Vasiliev, F.P. 1987Numerical Methods for Solving Extremum ProblemsNaukaMoscowGoogle Scholar

Copyright information

© Springer 2006

Authors and Affiliations

  1. 1.The School of Mathematics and Computer ScienceNational University of MongoliaUlaanbaatar
  2. 2.Department of Computer and Information SciencesIbaraki UniversityJapan

Personalised recommendations