Advertisement

Journal of Global Optimization

, Volume 31, Issue 3, pp 505–533 | Cite as

Boundary Hemivariational Inequalities of Hyperbolic Type and Applications

  • Stanislaw Migorski
Article

Abstract.

In this paper we examine two classes of nonlinear hyperbolic initial boundary value problems with nonmonotone multivalued boundary conditions characterized by the Clarke subdifferential. We prove two existence results for multidimensional hemivariational inequalities: one for the inequalities with relation between reaction and velocity and the other for the expressions containing the reaction–displacement law. The existence of weak solutions is established by using a surjectivity result for pseudomonotone operators and a priori estimates. We present also an example of dynamic viscoelastic contact problem in mechanics which illustrate the applicability of our results.

Keywords

hemivariational inequalities hyperbolic multifunction nonconvex subdifferential viscoelasticity 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Aubin, J.P., Cellina, A. 1984Differential Inclusions. Set-Valued Maps and Viability TheorySpringer-VerlagBerlin, New York, TokyoGoogle Scholar
  2. 2.
    Aubin, J.-P., Clarke, F.H. 1979Shadow prices and duality for a class of optimal control problemsSIAM J. Control Optim.17567586CrossRefGoogle Scholar
  3. 3.
    Berkovits, J., Mustonen, V. 1996Monotonicity methods for nonlinear evolution equationsNonlinear Anal. Theory Methods Appl.2713971405CrossRefGoogle Scholar
  4. 4.
    Browder, F.E., Hess, P. 1972Nonlinear mappings of monotone type in Banach spacesJournal of Functional Anal.11251294CrossRefGoogle Scholar
  5. 5.
    Carl, S. 1996Enclosure of solutions for quasilinear dynamic hemivariational inequalitiesNonlinear World3281298Google Scholar
  6. 6.
    Carl, S. 2001Existence of extremal solutions of boundary hemivariational inequalitiesJ. Differential Equations171370396CrossRefGoogle Scholar
  7. 7.
    Chau, O., Shillor, M. and Sofonea, M. (2001), Dynamic frictional contact with adhesion, J. Appl. Math. Physics, to appearGoogle Scholar
  8. 8.
    Clarke, F.H. 1983Optimization and Nonsmooth AnalysisWiley-InterscienceNew YorkGoogle Scholar
  9. 9.
    Duvaut, G., Lions, J.L. 1972Les In équations en Mécanique et en PhysiqueDunodParisGoogle Scholar
  10. 10.
    Gasin ski, L., (2000), Hyperbolic Hemivariational Inequalities and their Applications to Optimal Shape Design, PhD Thesis, Jagiellonian Univ., Cracow, Poland, in Polish, p. 61Google Scholar
  11. 11.
    Gasinski, L., Smolka, M. 2002An existence theorem for wave-type hyperbolic hemivariational inequalitiesMath. Nachr.242112Google Scholar
  12. 12.
    Goeleven, D., Miettinen, M., Panagiotopoulos, P.D. 1999Dynamic hemivariational inequalities and their applicationsJ. Optimiz. Theory and Appl.103567601CrossRefGoogle Scholar
  13. 13.
    Goele ven, D. and Motreanu, D. (2001), Hyperbolic hemivariational inequality and nonlinear wave equation with discontinuities. In: Gilbert, R.P. et al. (eds.), From Convexity to Nonconvexity, Kluwer, pp. 111–122Google Scholar
  14. 14.
    Haslinger, J., Miettinen, M., Panagiotopoulos, P.D. 1999Finite Element Method for Hemivariational Inequalities. Theory, Methods and ApplicationsKluwer Academic PublishersBoston, Dordrecht, LondonGoogle Scholar
  15. 15.
    Lions, J.L. 1969Quelques méthodes de résolution des problémes aux limites non linéairesDunodParisGoogle Scholar
  16. 16.
    Liu, Z. 1999A class of evolution hemivariational inequalitiesNonlinear Analysis3691100CrossRefGoogle Scholar
  17. 17.
    Miettinen, M. 1996A parabolic hemivariational inequalityNonlinear Analysis26725734CrossRefGoogle Scholar
  18. 18.
    Miettinen, M., Panagiotopoulos, P.D. 1998J. Global OptimizationHysteresis and hemivariational inequalities: semilinear case13269298Google Scholar
  19. 19.
    Miettinen, M., Panagiotopoulos, P.D. 1999On parabolic hemivariational inequalities and applicationsNonlinear Analysis35885915CrossRefGoogle Scholar
  20. 20.
    Migo rski, S. (1998), Identification of nonlinear heat transfer laws in problems modeled by hemivariational inequalities, In: Tanaka, M. and Dulikravich, G.S. (eds), Proceedings of International Symposium on Inverse Problems in Engineering Mechanics 1998 (ISIP’98), Elsevier Science B.V., pp. 27–37Google Scholar
  21. 21.
    Migorski, S. 2000Existence and convergence results for evolution hemivariational inequalitiesTopological Methods Nonlinear Anal.16125144Google Scholar
  22. 22.
    Migorski, S. 2001Evolution hemivariational inequalities in infinite dimension and their controlNonlinear Analysis47101112CrossRefMathSciNetGoogle Scholar
  23. 23.
    Migorski, S. 2001On existence of solutions for parabolic hemivariational inequalitiesJournal Comp. Appl. Math.1297787CrossRefGoogle Scholar
  24. 24.
    Migo rski, S., (2003), Modeling, analysis and optimal control of systems governed by hemivariational inequalities, In: Misra, J.C. (ed.), Industrial Mathematics and Statistics dedicated to commemorate the Golden Jubilee of Indian Institute of Technology, Kharagpur, India, 2002, invited paper, Narosa Publishing HouseGoogle Scholar
  25. 25.
    Migorski, S., Ochal, A. 2000Optimal control of parabolic hemivariational inequalitiesJ.Global Optimization17285300CrossRefGoogle Scholar
  26. 26.
    Migo rski S., and Ochal A., (2002), Existence of solutions to boundary parabolic hemivariational inequalities, In: Baniatopoulos, C.C. (ed.), Proceeding of the International Conference on Nonsmooth Nonconvex Mechanics with Applications in Engineering, Thessaloniki, Greece, July 5-6, 2002, Ziti Editions, pp. 53–60Google Scholar
  27. 27.
    Motreanu, D., Panagiotopoulos, P.D. 1999Minimax Theorems and Qualitative Properties of the Solutions of Hemivariational Inequalities and ApplicationsKluwer Academic PublishersBoston, Dordrecht, LondonGoogle Scholar
  28. 28.
    Naniewicz, Z., Panagiotopoulos, P.D. 1995Mathematical Theory of Hemivariational Inequalities and ApplicationsMarcel Dekker Inc.New York-Basel-Hong KongGoogle Scholar
  29. 29.
    Ochal, A. 2001Optimal Control of Evolution Hemivariational Inequalities, PhD ThesisJagiellonian Univ., CracowPoland63Google Scholar
  30. 30.
    Panagiotopoulos, P.D. 1985Inequality Problems in Mechanics and Applications. Convex and Nonconvex Energy FunctionsBirkhäuserBaselGoogle Scholar
  31. 31.
    Panagiotopoulos, P.D. 1991Coercive and semicoercive hemivariational inequalitiesNonlinear Analysis16209231CrossRefGoogle Scholar
  32. 32.
    Panagiotopoulos, P.D. 1995Modelling of nonconvex nonsmooth energy problems: dynamic hemivariational inequalities with impact effectsJ. Comput. Appl. Math.63123138CrossRefGoogle Scholar
  33. 33.
    Panag iotopoulos, P.D. (1995), Hemivariational inequalities and Fan-variational inequalities. New applications and results, Atti Sem. Mat. Fis. Univ. Modena, XLIII, 159–191Google Scholar
  34. 34.
    Panagiotopoulos, P.D. 1993Hemivariational Inequalities, Applications in Mechanics and EngineeringSpringer-VerlagBerlinGoogle Scholar
  35. 35.
    Panagiotopoulos, P.D., Pop, G. 1999On a type of hyperbolic variational-hemivari- ational inequalitiesJ. Applied Anal.595112Google Scholar
  36. 36.
    Papageorgiou, N.S., Papalini, F., Renzacci, F. 1999Existence of solutions and periodic solutions for nonlinear evolution inclusionsRend. Circolo Matematico di Palermo48341364Google Scholar
  37. 37.
    Xingming, G. 2001The initial boundary value problem of mixed-typed hemivariational inequalityIntern. J. Mathematics and Mathematical Sciences254352CrossRefGoogle Scholar
  38. 38.
    Zeidler, E. 1990Nonlinear Functional Analysis and Applications II A/BSpringerNew YorkGoogle Scholar

Copyright information

© Springer 2005

Authors and Affiliations

  1. 1.Faculty of Mathematics and Computer Science, Institute of Computer ScienceJagiellonian UniversityKrakowPoland

Personalised recommendations