Journal of Global Optimization

, Volume 32, Issue 2, pp 259–280 | Cite as

Accelerating Branch-and-Bound through a Modeling Language Construct for Relaxation-Specific Constraints

Article

Abstract

In the tradition of modeling languages for optimization, a single model is passed to a solver for solution. In this paper, we extend BARON’s modeling language in order to facilitate the communication of problem-specific relaxation information from the modeler to the branch-and-bound solver. This effectively results into two models being passed from the modeling language to the solver. Three important application areas are identified and computational experiments are presented. In all cases, nonlinear constraints are provided only to the relaxation constructor in order to strengthen the lower bounding step of the algorithm without complicating the local search process. In the first application area, nonlinear constraints from the reformulation–linearization technique (RLT) are added to strengthen a problem formulation. This approach is illustrated for the pooling problem and computational results show that it results in a scheme that makes global optimization nearly as fast as local optimization for pooling problems from the literature. In the second application area, we communicate with the relaxation constructor the first-order optimality conditions for unconstrained global optimization problems. Computational experiments with polynomial programs demonstrate that this approach leads to a significant reduction of the size of the branch-and-bound search tree. In the third application, problem-specific nonlinear optimality conditions for the satisfiability problem are used to strengthen the lower bounding step and are found to significantly expedite the branch-and-bound algorithm when applied to a nonlinear formulation of this problem.

Keywords

BARON First-order optimality conditions Mathematical programming modeling languages Pooling problem Reformulation-linearization Satisfiability 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Ahmed, S, Tawarmalani, M., Sahinidis, N.V. 2004A finite branch-and-bound algorithm for two-stage stochastic integer programsMathematical Programming.100355377CrossRefGoogle Scholar
  2. 2.
    Ben-Tal, A, Eiger, G., Gershovitz, V. 1994Global minimization by reducing the duality gapMathematical Programming63193212CrossRefGoogle Scholar
  3. 3.
    Bisschop, J., Meeraus, A. 1982On the development of a general algebraic modeling system in a strategic planning environmentMathematical Programming Study20129Google Scholar
  4. 4.
    Du, DGu, J.Pardalos, P.M. eds. 1997Satisfiability Problem: Theory and Applications, DIMACS Series in Discrete Mathematics and Theoretical Computer Science, Vol. 35American Mathematical SocietyProvidence, RIGoogle Scholar
  5. 5.
    Falk, J.E., Soland, R.M. 1969An algorithm for separable nonconvex programming problemsManagement Science15550569Google Scholar
  6. 6.
    Fourer, R, Gay, D., Kernigham, B.W. 1993AMPL: A Modeling Language for Mathematical ProgrammingThe Scientific PressSan Francisco, CAGoogle Scholar
  7. 7.
    Gau, T., Schrage, L.E. (2003). Implementing a global solver in a general purpose callable library, Global Optimization Theory Institute, Argonne National Laboratory, September 8–10Google Scholar
  8. 8.
    Ghildyal, V. 1997Design and Development of a Global Optimization System. Master’s thesisDepartment of Mechanical & Industrial Engineering, University of IllinoisUrbana, ILGoogle Scholar
  9. 9.
    Ghildyal V., Sahinidis N.V. (2001). Solving global optimization problems with BARON. In: Migdalas A, Pardalos P., Varbrand P. (ed). From Local to Global Optimization, A Workshop on the Occasion of the 70th Birthday of Professor Hoang Tuy, Linköping, Sweden, Aug. 24–29, 1997, Kluwer Academic Publishers, Boston, MA pp. 205–230Google Scholar
  10. 10.
    Gu J, Purdom P.W., Franco J., Wah B.W. (1997). Algorithms for the satisfiability (SAT) problem: A survey. In: Du D, Gu J., Pardalos P.M. (ed). Satisfiability Problem: Theory and Applications, DIMACS Series in Discrete Mathematics and Theoretical Computer Science, Vol. 35. Providence RI, pp. 19–151Google Scholar
  11. 11.
    Hoos, H.H., Stützle, T. (2000). SATLIB: An Online Resource for Research on SAT. In: Gent I.P., van Maaren, H., Walsh, T. (eds.). Satisfiability Problem: Theory and Applications, IOS Press, Amsterdam, pp. 283–292. SATLIB is available online at http://www.satlib.org/Google Scholar
  12. 12.
    Horst, R., Tuy, H. 1996Global Optimization, Deterministic Approaches3Springer VerlagBerlinGoogle Scholar
  13. 13.
    Kearfott R.B. (1996). Rigorous Global Search: Continuous Problems, In: Nonconvex Optimization and Its Applications, Vol. 13. Kluwer Academic Publishers, DordrechtGoogle Scholar
  14. 14.
    McCormick, G.P. (1972). Converting general nonlinear programming problems to separable nonlinear programming problems. Technical Report T-267, The George Washington University, Washington, D.CGoogle Scholar
  15. 15.
    McCormick, G.P. 1976Computability of global solutions to factorable non-convex programs: Part I – Convex underestimating problemsMathematical Programming10147175CrossRefGoogle Scholar
  16. 16.
    McCormick G.P. (1983). Nonlinear Programming: Theory, Algorithms and Applications, John Wiley & SonsGoogle Scholar
  17. 17.
    Moore, R. 1993Interval AnalysisPrentice HallEnglewood Cliffs, NJGoogle Scholar
  18. 18.
    Quesada, I., Grossmann, I.E. 1995Global optimization of bilinear process networks and multicomponent flowsComputers and Chemical Engineering1912191242CrossRefGoogle Scholar
  19. 19.
    Ryoo, H.S., Sahinidis, N.V. 1995Global optimization of nonconvex NLPs and MINLPs with applications in process designComputers and Chemical Engineering19551566CrossRefGoogle Scholar
  20. 20.
    Ryoo, H.S., Sahinidis, N.V. 1996A branch-and-reduce approach to global optimizationJournal of Global Optimization8107139CrossRefGoogle Scholar
  21. 21.
    Sahinidis, N.V. 1996BARON: A general purpose global optimization software packageJournal of Global Optimization8201205MathSciNetGoogle Scholar
  22. 22.
    Sahinidis, N.V. 2003

    Global optimization and constraint satisfaction: The branch-and-reduce approach

    Bliek, C.Jermann, A.C.Neumaier, A. eds. Global Optimization and Constraint Satisfaction, Lecture Notes in Computer Science Vol. 2861.SpringerBerlin116
    Google Scholar
  23. 23.
    Schichl, H, Dallwig, S., Neumaier, A. 2001The NOP-2 modeling language for nonlinear programmingAnnals of Operations Research104281312CrossRefMathSciNetGoogle Scholar
  24. 24.
    Schweiger, C.A., Floudas, C.A. (1998). MINOPT: A Modeling Language and Algorithmic Framework for Linear, Mixed-Integer, Nonlinear, Dynamic, and Mixed-Integer Nonlinear Optimization, Version 3.1, User’s Manual’. Available at http://titan.princeton.edu/MINOPT/minopt.html.Google Scholar
  25. 25.
    Shectman, J.P., Sahinidis, N.V. 1998A finite algorithm for global minimization of separable concave programsJournal of Global Optimization12136CrossRefGoogle Scholar
  26. 26.
    Sherali H.D., Adams, W.P. (1999). A Reformulation–Linearization Technique for Solving Discrete and Continuous Nonconvex Problems, In: Nonconvex Optimization and its Applications, Vol. 3.1 Kluwer Academic Publishers, DordrechtGoogle Scholar
  27. 27.
    Sherali, H.D., Adams, W.P., Driscol, , P.J.,  1999Exploiting special structures in constructing a hierarchy of relaxations for 0–1 mixed integer programsOperations Research46396405MathSciNetGoogle Scholar
  28. 28.
    Sherali, H.D., Smith, J.C. 2001Improving discrete model representations via symmetry considerationsManagement Science4713961407CrossRefGoogle Scholar
  29. 29.
    Sherali, H.D., Tuncbilek, C.H. 1995A reformulation–convexification approach for solving nonconvex quadratic programming problemsJournal of Global Optimization7131CrossRefGoogle Scholar
  30. 30.
    Sherali, H.D., Wang, H. 2001Global optimization of nonconvex factorable programming problemsMathematical Programming89459478Google Scholar
  31. 31.
    Smith, E.M.B., Pantelides, C.C. 1996

    Global optimisation of general process models

    Grossmann, I.E. eds. Global Optimization in Engineering Design.Kluwer Academic PublishersBoston, MA355386
    Google Scholar
  32. 32.
    Tawarmalani, M., Sahinidis, N.V. 2001Semidefinite relaxations of fractional programs via novel techniques for constructing convex envelopes of nonlinear functionsJournal of Global Optimization20137158CrossRefGoogle Scholar
  33. 33.
    Tawarmalani, M., Sahinidis, N.V. 2002Convex extensions and convex envelopes of l.s.c. functionsMathematical Programming93247263CrossRefGoogle Scholar
  34. 34.
    Tawarmalani, M., Sahinidis, N.V. 2002Convexification and Global Optimization in Continuous and Mixed-Integer Nonlinear Programming: Theory, Algorithms, Software, and Applications, Vol. 65 of Nonconvex Optimization and Its ApplicationsKluwer Academic PublishersDordrechtGoogle Scholar
  35. 35.
    Tawarmalani, M., Sahinidis, N.V. 2004Global optimization of mixed-integer nonlinear programs: A theoretical and computational studyMathematical Programming.99563591CrossRefGoogle Scholar
  36. 36.
    Van Hentenryck, P, Michel, L., Deville, Y. 1997Numerica: A Modeling Language for Global OptimizationThe MIT PressCambridge, MAGoogle Scholar

Copyright information

© Springer 2005

Authors and Affiliations

  1. 1.Department of Chemical and Biomolecular EngineeringUniversity of Illinois at Urbana-ChampaignUrbanaUSA
  2. 2.Krannert School of ManagementPurdue UniversityWest LafayetteUSA

Personalised recommendations