Journal of Global Optimization

, Volume 32, Issue 4, pp 569–580 | Cite as

Upper Semicontinuity of the Solution set to Parametric Vector Quasivariational Inequalities

  • Phan Quoc Khanh
  • Le Minh luu
Article

Abstract

We prove the upper semicontinuity (in term of the closedness) of the solution set with respect to parameters of vector quasivariational inequalities involving multifunctions in topological vector spaces under the semicontinuity of the data, avoiding monotonicity assumptions. In particular, a new quasivariational inequality problem is proposed. Applications to quasi-complementarity problems are considered

Keywords

Closedness Lower semicontinuity Multifunctions Quasi-complementarity problems Topological vector spaces Upper semicontinuity Vector quasivariational inequalities 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Aubin, R., Frankowska, H. 1990Set-Valued AnalysisBirkhauserBerlin.Google Scholar
  2. Berge, C. 1968Topological SpacesMacMillanNew YorkGoogle Scholar
  3. Chadli, O., Chbani, Z., Riahi, H. 2000Equilibrium problems with generalized monotone bifunctions and applications to variational inequalitiesJournal of Mathematical Analysis and Applications105299323Google Scholar
  4. Cheng Y.H., Zhu D.L. (2004), Global stability results for the weak vector variational inequality, Journal of Global Optimization (this issue)Google Scholar
  5. Cubiotti, P. 2002On the discontinuous infinite-dimensional generalized quasivariational inequality problemJournal of Mathematical Analysis and Applications1597111Google Scholar
  6. Dafermos, S. 1988Sensitivity analysis in variational inequlitiesMathematics of Operations Research13421434Google Scholar
  7. Ding, X.P. 1992Generalized variational-like inequalities with nonmonotone set-valued mappingsJournal of Mathematics Analysis and Applications95601613Google Scholar
  8. Ding, X.P., Luo, C.L. 1999On parametric generalized quasi-variational inequalitiesJournal of Optimization Theory and Applications100195205CrossRefGoogle Scholar
  9. Di Pillo, G., Giannessi, F. 1996Nonlinear Optimization and ApplicationsPlenum PressNew YorkGoogle Scholar
  10. Domokos, A. 1999Solution sensitivity of variational inequalitiesJournal of Mathematical Analysis and Applications230382389CrossRefGoogle Scholar
  11. Fu, J. 2000

    A vector variational-like inequality for compact acyclic multi-functions and its applications

    Giannessi, F eds. Vector Variational Inequalities and Vector Equilibria.Kluwer AcademicDordrecht
    Google Scholar
  12. Giannessi, F. eds. 2000Vector Variational Inequalities and Vector EquilibriaKluwer AcademicDordrechtGoogle Scholar
  13. Giannessi, F.Maugeri, A. eds. 1995Variational Inequalities and Network Equilibrium ProblemsPlenum PressNew YorkGoogle Scholar
  14. Gwinner, J. 1995

    Stability of monotone variational inequalities with various applications

    Giannessi, F.Maugeri, A. eds. Variational Inequalities and Network Equilibrium Problems.Plenum PressNew York
    Google Scholar
  15. Karamardian, S. 1971Generalized complementarity problemJournal of Optimization Theory and Applications8161168CrossRefGoogle Scholar
  16. Kassay, G., Kolumban, J. 2000Multivalued parametric variational inequalities with α-pseudomonotone mapsJournal of Mathematical Analysis and Applications1073550Google Scholar
  17. Khanh, P.Q., Luu, L.M. 2004aOn the existence of solutions to vector quasi-variational inequalities and quasi-complementarity problems with applications to traffic network equilibriaJournal of Optimization Theory and Applications123533548CrossRefGoogle Scholar
  18. Khanh P.Q., Luu L.M. (2004b). Some existence results for vector quasi-variational inequalities involving multifunctions and applications to traffic equilibrium problems, Journal of Global Optimization (this issue)Google Scholar
  19. Konnov, I.V. 2001Combined Relaxation Method for Variational InequalitiesSpringerBerlinGoogle Scholar
  20. Lancaster, K. 1968Mathematical EconomicsThe Macmillan CompanyNew YorkGoogle Scholar
  21. Levy, A.B. 1999Sensitivity of solutions to variational inequalities on Banach spacesSIAM Journal of Control and Optimization385060CrossRefGoogle Scholar
  22. Li, S.J., Chen, G.I., Teo, K.L. 2002On the stability of generalized vector quasivariational inequality problemsJournal of Mathematical Analysis and Applications113283295Google Scholar
  23. Lignola, M.B., Morgan, J. 1999Generalized variational inequalities with pseudomonotone operators under perturbationsJournal of Optimization Theory and Applications101213220CrossRefGoogle Scholar
  24. Mukherjee, R.N., Verma, H.L. 1992Sensitivity analysis of generalized variaional inequalitiesJournal of Mathematical Analysis and Applications167299304CrossRefGoogle Scholar
  25. Muu, L.D. 1984Stability property of a class of variational inequalitiesMathematische Operationsforschung und Statistik, Serie Optimization15347351Google Scholar
  26. Noor, M.A. 1992General algorithm and sensitivity analysis for variational inequalitiesJournal of Applied Mathematics and Stochastic Analysis52942Google Scholar
  27. Noor, M.A. 1997Sensitivity analysis for variational inequalitiesOptimization11207217Google Scholar
  28. Noor, M.A., Oettli, W. 1994On general nonlinear complementarity problems and quasi-equilibriaLe Matematiche49313331Google Scholar
  29. Robinson, S.M. 1995

    Sensitivity analysis of variational inequalities by normal-map techniques

    Giannesi, F.Maugeri, A. eds. Variational Inequalities and Network Equilibrium Problems.Plenum PressNew York
    Google Scholar
  30. Rockafellar, R.T., Wets, R.J.-B. 1998Variational AnalysisSpringerBerlinGoogle Scholar
  31. Yao, J.C. 1994Multi-valued variational inequalities with K-pseudomonotone operatorsJournal of Mathematical Analysis and Applications83391403Google Scholar
  32. Yen, N.D. 1995Lipschitz continuity of solutions of variational inequalities with a parametric polyhedral constraintMathematics of Operations Research20695708Google Scholar

Copyright information

© Springer 2005

Authors and Affiliations

  • Phan Quoc Khanh
    • 1
  • Le Minh luu
    • 2
  1. 1.Department of Mathematics International UniversityVietnam National UniversityHochiminh CityVietnam
  2. 2.Department of MathematicsUniversity of DalatDalatVietnam

Personalised recommendations