Journal of Global Optimization

, Volume 32, Issue 4, pp 451–466 | Cite as

A Nonlinear Scalarization Function and Generalized Quasi-vector Equilibrium Problems

  • G. Y. Chen
  • X. Q. Yang
  • H. Yu


Scalarization method is an important tool in the study of vector optimization as corresponding solutions of vector optimization problems can be found by solving scalar optimization problems. In this paper we introduce a nonlinear scalarization function for a variable domination structure. Several important properties, such as subadditiveness and continuity, of this nonlinear scalarization function are established. This nonlinear scalarization function is applied to study the existence of solutions for generalized quasi-vector equilibrium problems.


existence generalized quasi-vector equilibrium scalarization method 

Mathematics Subject Classifications

90C47 90C33 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Aubin, J.P., Ekeland, I. 1984Applied Nonlinear AnalysisJ. WileyNew YorkGoogle Scholar
  2. 2.
    Aubin, J.P., Frankowska, H. 1990Set-valued AnalysisBirkhauserBoston, BerlinGoogle Scholar
  3. 3.
    Bianchi, M., Hadjisavvas, N., Schaible, S. 1999Vector equilibrium problems with generalized monotone bifunctionsJournal of Optimization Theory and Applications92531546Google Scholar
  4. 4.
    Bianchi, M., Schaible, S. 1996Generalized monotone bifunctions and equilibrium problemsJournal of Optimization Theory and Application903143CrossRefGoogle Scholar
  5. 5.
    Blum, E., Oettli, W. 1994From optimization and variational inequalities to equilibrium problemsThe Mathematics Student63123145Google Scholar
  6. 6.
    Chen, G.Y. 1992Exsitence of solutions for a vector variational inequality: an extension of the Hartmann-Stampachia theoremJournal of Optimization Theory and Applications74445456CrossRefGoogle Scholar
  7. 7.
    Chen, G.Y., Li, S.J. 1996Existence of solutions for generalized vector quasi-variational inequalityJournal of Optimization Theory and Applications90321334CrossRefGoogle Scholar
  8. 8.
    Chen, G.Y., Yang, X.Q. 2002Characterizations of variable domination structures via a nonlinear scalarizationJournal of Optimizaton Theory and Applications11297110CrossRefGoogle Scholar
  9. 9.
    Evans, B.C. 1971On the basic theorem of complementarityMathematical Programming16875CrossRefGoogle Scholar
  10. 10.
    Gerth(Tammer), Chr. and Weidner, P. (1990), Nonconvex secparation theorems and some applications in vector optimization, Journal of Optimization Theory and Applcaiotns, 67, 297–320.Google Scholar
  11. 11.
    Giannessi, F.,  et al. 1980Theorems of alternative, quadratic programs and complementarity problemsCottle, R.W. eds. Variational Inequality Complementary ProblemsWileyNew York151186Google Scholar
  12. 12.
    Konnov, V., Yao, J.C. 1999Existence of solutions for generalized vector equilibrium problemsJournal of Mathematical Analysis and Applications23328335CrossRefGoogle Scholar
  13. 13.
    Lee, G.M., Kim, D.S., Lee, B.S. 1996On noncooperative vector equilibriumIndian Journal of Pure and Applied Math27735739Google Scholar
  14. 14.
    Lin, L.J. 1996Pre-vector variational inequalitiesBull. Austral. Math. Soc.536370Google Scholar
  15. 15.
    Luc, D.T. 1989Theory of Vector Optimization, Lecture Notes in Economics and Mathematical SystemsSpringer-VelagBerlin319Google Scholar
  16. 16.
    Oettli, W., Schlager, D.,  et al. 1997Generalized vectorial equilibria and generalized monotonicityBrokate, M. eds. Functional Analysis and Current ApplicationsLongmangLondon145154Google Scholar
  17. 17.
    Oettli, W., Schlager, D. 1998Existence of equilibria for multivalued mappingsMath. Meth. Oper. Res.48219228CrossRefGoogle Scholar
  18. 18.
    Siddiqi, A.H., Ansari, Q.H., Ahmad, R. 1995On vector variational inequalityJournal of Optimization Theory and Applications84171180CrossRefGoogle Scholar
  19. 19.
    Tanino, T., Sawaragi, Y. 1980Stability of nondominated solutions in multicriteria decision makingJournal Optimization Theory and Applications30229253CrossRefGoogle Scholar
  20. 20.
    Yang, X.Q. 1993Vector variational inequalities and its dualityNonlinear Analysis – Theory, Method and Applications21867877Google Scholar
  21. 21.
    Yang, X.Q., Goh, C.J. 1997On vector variational inequality application to vector equilibriaJournal of Optimization Theory and Applicaitons95431443CrossRefGoogle Scholar
  22. 22.
    Yu, P.L. 1985Multiple-criteria Decision Making: Concepts, Technieques, and ExtensionsPlenum PressNew York, N.Y.Google Scholar
  23. 23.
    Jeyakumar, V., Oettli, W., Natividad, M. 1993A solvability theorem for a class of quasiconvex mappings with applications to optimizationJournal of Mathematical Analysis and Applications179537546CrossRefGoogle Scholar
  24. 24.
    Fu, J.Y. 2000Generalized vector quasi-equilibrium problemsMath. Meth. Oper. Res.525764CrossRefGoogle Scholar

Copyright information

© Springer 2005

Authors and Affiliations

  1. 1.Institute of Systems ScienceChinese Academy of SciencesBeijingChina
  2. 2.Department of Applied MathematicsThe Hong Kong Polytechnic UniversityKowloonHong Kong
  3. 3.School of Economics and ManagementTsinghua UniversityBeijingChina

Personalised recommendations