Journal of Genetic Counseling

, Volume 26, Issue 3, pp 511–521 | Cite as

Information Topics of Greatest Interest for Return of Genome Sequencing Results among Women Diagnosed with Breast Cancer at a Young Age

  • Joann Seo
  • Jennifer Ivanovich
  • Melody S. Goodman
  • Barbara B. Biesecker
  • Kimberly A. Kaphingst
Original Research


We investigated what information women diagnosed with breast cancer at a young age would want to learn when genome sequencing results are returned. We conducted 60 semi-structured interviews with women diagnosed with breast cancer at age 40 or younger. We examined what specific information participants would want to learn across result types and for each type of result, as well as how much information they would want. Genome sequencing was not offered to participants as part of the study. Two coders independently coded interview transcripts; analysis was conducted using NVivo10. Across result types, participants wanted to learn about health implications, risk and prevalence in quantitative terms, causes of variants, and causes of diseases. Participants wanted to learn actionable information for variants affecting risk of preventable or treatable disease, medication response, and carrier status. The amount of desired information differed for variants affecting risk of unpreventable or untreatable disease, with uncertain significance, and not health-related. Women diagnosed with breast cancer at a young age recognize the value of genome sequencing results in identifying potential causes and effective treatments and expressed interest in using the information to help relatives and to further understand their other health risks. Our findings can inform the development of effective feedback strategies for genome sequencing that meet patients’ information needs and preferences.


Genome sequencing Return of results Patient preferences Information needs Breast cancer 



This work was supported by the National Cancer Institute, National Institutes of Health (R01CA168608). This research was also supported in part by the Intramural Research Program of the National Human Genome Research Institute, National Institutes of Health.

The authors would like to thank the women who agreed to participate in the study, and the coders for their valuable assistance in coding interview transcripts.

Compliance with Ethical Standards

Conflict of Interest

Joann Seo, Jennifer Ivanovich, Melody Goodman, Barbara Biesecker, and Kimberly Kaphingst declare that they have no conflict of interest.

Human Studies and Informed Consent

All procedures followed were in accordance with the ethical standards of the responsible committee on human experimentation (institutional and national) and with the Helsinki Declaration of 1975, as revised in 2000. Informed consent was obtained from all patients for being included in the study.

Animal Studies

No animal studies were carried out by the authors for this article.


  1. Anders, C. K., Hsu, D. S., Broadwater, G., Acharya, C. R., Foekens, J. A., Zhang, Y., et al. (2008). Young age at diagnosis correlates with worse prognosis and defines a subset of breast cancers with shared patterns of gene expression. Journal of Clinical Oncology, 26(20), 3324–3330. doi: 10.1200/jco.2007.14.2471.CrossRefPubMedGoogle Scholar
  2. Anders, C. K., Johnson, R., Litton, J., Phillips, M., & Bleyer, A. (2009). Breast cancer before age 40 years. Seminars in Oncology, 36(3), 237–249. doi: 10.1053/j.seminoncol.2009.03.001.CrossRefPubMedPubMedCentralGoogle Scholar
  3. Assi, H. A., Khoury, K. E., Dbouk, H., Khalil, L. E., Mouhieddine, T. H., & El Saghir, N. S. (2013). Epidemiology and prognosis of breast cancer in young women. Journal of Thoracic Disease, 5(Suppl 1), S2–S8. doi: 10.3978/j.issn.2072-1439.2013.05.24.PubMedPubMedCentralGoogle Scholar
  4. Biesecker, L. G., & Green, R. C. (2014). Diagnostic clinical genome and exome sequencing. The New England Journal of Medicine, 370(25), 2418–2425. doi: 10.1056/NEJMra1312543.CrossRefPubMedGoogle Scholar
  5. Bonadona, V., Sinilnikova, O. M., Chopin, S., Antoniou, A. C., Mignotte, H., Mathevet, P., et al. (2005). Contribution of BRCA1 and BRCA2 germ-line mutations to the incidence of breast cancer in young women: results from a prospective population-based study in France. Genes, Chromosomes & Cancer, 43(4), 404–413. doi: 10.1002/gcc.20199.CrossRefGoogle Scholar
  6. Bredenoord, A. L., Kroes, H. Y., Cuppen, E., Parker, M., & van Delden, J. J. (2011). Disclosure of individual genetic data to research participants: the debate reconsidered. Trends in Genetics, 27(2), 41–47. doi: 10.1016/j.tig.2010.11.004.CrossRefPubMedGoogle Scholar
  7. Caulfield, T., McGuire, A. L., Cho, M., Buchanan, J. A., Burgess, M. M., Danilczyk, U., et al. (2008). Research ethics recommendations for whole-genome research: consensus statement. PLoS Biology, 6(3), e73. doi: 10.1371/journal.pbio.0060073.CrossRefPubMedPubMedCentralGoogle Scholar
  8. Christenhusz, G. M., Devriendt, K., Peeters, H., Van Esch, H., & Dierickx, K. (2014). The communication of secondary variants: interviews with parents whose children have undergone array-CGH testing. Clinical Genetics, 86(3), 207–216. doi: 10.1111/cge.12354.CrossRefPubMedGoogle Scholar
  9. Crouch, J., Yu, J. H., Shankar, A. G., & Tabor, H. K. (2015). “We don’t know her history, her background”: adoptive parents’ perspectives on whole genome sequencing results. Journal of Genetic Counseling, 24(1), 67–77. doi: 10.1007/s10897-014-9738-z.CrossRefPubMedGoogle Scholar
  10. Cybulski, C., Wokolorczyk, D., Jakubowska, A., Huzarski, T., Byrski, T., Gronwald, J., et al. (2011). Risk of breast cancer in women with a CHEK2 mutation with and without a family history of breast cancer. Journal of Clinical Oncology, 29(28), 3747–3752. doi: 10.1200/jco.2010.34.0778.CrossRefPubMedGoogle Scholar
  11. Desmond, A., Kurian, A. W., Gabree, M., Mills, M. A., Anderson, M. J., Kobayashi, Y., et al. (2015). Clinical actionability of multigene panel testing for hereditary breast and ovarian cancer risk assessment. JAMA Oncology, 1(7), 943–951. doi: 10.1001/jamaoncol.2015.2690.CrossRefPubMedGoogle Scholar
  12. Dressler, L. G. (2009a). Biobanking and disclosure of research results: Addressing the tension between professional boundaries and moral intuition. In J. H. Solbakk, S. Holm, & B. Hofmann (Eds.), The ethics of research biobanking (pp. 85–99). New York: Springer.CrossRefGoogle Scholar
  13. Dressler, L. G. (2009b). Disclosure of research results from cancer genomic studies: state of the science. Clinical Cancer Research, 15(13), 4270–4276. doi: 10.1158/1078-0432.CCR-08-3067.CrossRefPubMedGoogle Scholar
  14. Ellis, M. J., Ding, L., Shen, D., Luo, J., Suman, V. J., Wallis, J. W., & Mardis, E. R. (2012). Whole-genome analysis informs breast cancer response to aromatase inhibition. Nature, 486(7403), 353–360. doi: 10.1038/nature11143.PubMedPubMedCentralGoogle Scholar
  15. Facio, F. M., Brooks, S., Loewenstein, J., Green, S., Biesecker, L. G., & Biesecker, B. B. (2011). Motivators for participation in a whole-genome sequencing study: implications for translational genomics research. European Journal of Human Genetics, 19(12), 1213–1217. doi: 10.1038/ejhg.2011.123.CrossRefPubMedPubMedCentralGoogle Scholar
  16. Fredholm, H., Eaker, S., Frisell, J., Holmberg, L., Fredriksson, I., & Lindman, H. (2009). Breast cancer in young women: poor survival despite intensive treatment. PloS One, 4(11), e7695. doi: 10.1371/journal.pone.0007695.CrossRefPubMedPubMedCentralGoogle Scholar
  17. Golshan, M., Miron, A., Nixon, A. J., Garber, J. E., Cash, E. P., Iglehart, J. D., & Wong, J. S. (2006). The prevalence of germline BRCA1 and BRCA2 mutations in young women with breast cancer undergoing breast-conservation therapy. American Journal of Surgery, 192(1), 58–62. doi: 10.1016/j.amjsurg.2005.12.005.CrossRefPubMedGoogle Scholar
  18. Gray, S. W., Hicks-Courant, K., Cronin, A., Rollins, B. J., & Weeks, J. C. (2014). Physicians’ attitudes about multiplex tumor genomic testing. Journal of Clinical Oncology, 32(13), 1317–1323. doi: 10.1200/JCO.2013.52.4298.CrossRefPubMedPubMedCentralGoogle Scholar
  19. Green, R. C., Berg, J. S., Grody, W. W., Kalia, S. S., Korf, B. R., Martin, C. L., & Genomics (2013). ACMG recommendations for reporting of incidental findings in clinical exome and genome sequencing. Genetics in Medicine, 15(7), 565–574. doi: 10.1038/gim.2013.73.CrossRefPubMedPubMedCentralGoogle Scholar
  20. Green, R. C., Goddard, K. A., Jarvik, G. P., Amendola, L. M., Appelbaum, P. S., Berg, J. S., et al. (2016). Clinical sequencing exploratory research consortium: accelerating evidence-based practice of genomic medicine. American Journal of Human Genetics, 98(6), 1051–1066. doi: 10.1016/j.ajhg.2016.04.011.CrossRefPubMedPubMedCentralGoogle Scholar
  21. Guba, E. G., & Lincoln, Y. S. (1994). Competing paradigms in qualitative research. In N. K. Denzin & Y. S. Lincoln (Eds.), Handbook of qualitative research (pp. 105–117). Thousand Oaks: Sage.Google Scholar
  22. Heemskerk-Gerritsen, B. A., Rookus, M. A., Aalfs, C. M., Ausems, M. G., Collee, J. M., Jansen, L., et al. (2015). Improved overall survival after contralateral risk-reducing mastectomy in BRCA1/2 mutation carriers with a history of unilateral breast cancer: a prospective analysis. International Journal of Cancer, 136(3), 668–677. doi: 10.1002/ijc.29032.PubMedGoogle Scholar
  23. Hitch, K., Joseph, G., Guiltinan, J., Kianmahd, J., Youngblom, J., & Blanco, A. (2014). Lynch syndrome patients’ views of and preferences for return of results following whole exome sequencing. Journal of Genetic Counseling, 23(4), 539–551. doi: 10.1007/s10897-014-9687-6.CrossRefPubMedPubMedCentralGoogle Scholar
  24. Hsieh, H. F., & Shannon, S. E. (2005). Three approaches to qualitative content analysis. Qualitative Health Research, 15(9), 1277–1288. doi: 10.1177/1049732305276687.CrossRefPubMedGoogle Scholar
  25. Ingham, S. L., Sperrin, M., Baildam, A., Ross, G. L., Clayton, R., Lalloo, F., et al. (2013). Risk-reducing surgery increases survival in BRCA1/2 mutation carriers unaffected at time of family referral. Breast Cancer Research and Treatment, 142(3), 611–618. doi: 10.1007/s10549-013-2765-x.CrossRefPubMedGoogle Scholar
  26. Institute of Medicine (2001). Crossing the quality chasm: A new health system for the 21st century. Washington, D.C.: National Academies Press.Google Scholar
  27. Jamal, S. M., Yu, J. H., Chong, J. X., Dent, K. M., Conta, J. H., Tabor, H. K., & Bamshad, M. J. (2013). Practices and policies of clinical exome sequencing providers: analysis and implications. American Journal of Medical Genetics. Part A, 161A(5), 935–950. doi: 10.1002/ajmg.a.35942.CrossRefPubMedGoogle Scholar
  28. Janatova, M., Kleibl, Z., Stribrna, J., Panczak, A., Vesela, K., Zimovjanova, M., et al. (2013). The PALB2 gene is a strong candidate for clinical testing in BRCA1- and BRCA2-negative hereditary breast cancer. Cancer Epidemiology, Biomarkers & Prevention, 22(12), 2323–2332. doi: 10.1158/1055-9965.epi-13-0745-t.CrossRefGoogle Scholar
  29. Johnson, R. H., Chien, F. L., & Bleyer, A. (2013). Incidence of breast cancer with distant involvement among women in the United States, 1976 to 2009. JAMA, 309(8), 800–805. doi: 10.1001/jama.2013.776.CrossRefPubMedGoogle Scholar
  30. Kaphingst, K. A., McBride, C. M., Wade, C., Alford, S. H., Brody, L. C., & Baxevanis, A. D. (2010). Consumers’ use of web-based information and their decisions about multiplex genetic susceptibility testing. Journal of Medical Internet Research, 12(3), e41. doi: 10.2196/jmir.1587.CrossRefPubMedPubMedCentralGoogle Scholar
  31. Kaphingst, K. A., Ivanovich, J., Biesecker, B. B., Dresser, R., Seo, J., Dressler, L. G., & Goodman, M. S. (2016). Preferences for return of incidental findings from genome sequencing among women diagnosed with breast cancer at a young Age. Clinical Genetics, 89(3), 378–384. doi: 10.1111/cge.12597.CrossRefPubMedGoogle Scholar
  32. Leventhal, K. G., Tuong, W., Peshkin, B. N., Salehizadeh, Y., Fishman, M. B., Eggly, S., et al. (2013). “Is it really worth it to get tested?”: primary care patients’ impressions of predictive SNP testing for colon cancer. Journal of Genetic Counseling, 22(1), 138–151. doi: 10.1007/s10897-012-9530-x.CrossRefPubMedGoogle Scholar
  33. Manolio, T. A., Chisholm, R. L., Ozenberger, B., Roden, D. M., Williams, M. S., Wilson, R., et al. (2013). Implementing genomic medicine in the clinic: the future is here. Genetics in Medicine, 15(4), 258–267. doi: 10.1038/gim.2012.157.CrossRefPubMedPubMedCentralGoogle Scholar
  34. Mardis, E. R. (2008). The impact of next-generation sequencing technology on genetics. Trends in Genetics, 24(3), 133–141. doi: 10.1016/j.tig.2007.12.007.CrossRefPubMedGoogle Scholar
  35. Matsui, K., Lie, R. K., Kita, Y., & Ueshima, H. (2008). Ethics of future disclosure of individual risk information in a genetic cohort study: a survey of donor preferences. Journal of Epidemiology, 18(5), 217–224.CrossRefPubMedPubMedCentralGoogle Scholar
  36. Mavaddat, N., Peock, S., Frost, D., Ellis, S., Platte, R., Fineberg, E., et al. (2013). Cancer risks for BRCA1 and BRCA2 mutation carriers: results from prospective analysis of EMBRACE. Journal of the National Cancer Institute, 105(11), 812–822. doi: 10.1093/jnci/djt095.CrossRefPubMedGoogle Scholar
  37. McGuire, A. L., & Lupski, J. R. (2010). Personal genome research : what should the participant be told? Trends in Genetics, 26(5), 199–201. doi: 10.1016/j.tig.2009.12.007.CrossRefPubMedPubMedCentralGoogle Scholar
  38. McLaughlin, H. M., Ceyhan-Birsoy, O., Christensen, K. D., Kohane, I. S., Krier, J., Lane, W. J., & MedSeq, P. (2014). A systematic approach to the reporting of medically relevant findings from whole genome sequencing. BMC Medical Genetics, 15, 134. doi: 10.1186/s12881-014-0134-1.CrossRefPubMedPubMedCentralGoogle Scholar
  39. Murphy, J., Scott, J., Kaufman, D., Geller, G., LeRoy, L., & Hudson, K. (2008). Public expectations for return of results from large-cohort genetic research. The American Journal of Bioethics, 8(11), 36–43. doi: 10.1080/15265160802513093.CrossRefPubMedPubMedCentralGoogle Scholar
  40. O’Daniel, J., & Haga, S. B. (2011). Public perspectives on returning genetics and genomics research results. Public Health Genomics, 14, 346–355. doi: 10.1159/000324933.CrossRefPubMedPubMedCentralGoogle Scholar
  41. O’Neill, S. C., Lipkus, I. M., Sanderson, S. C., Shepperd, J., Docherty, S., & McBride, C. M. (2013). Motivations for genetic testing for lung cancer risk among young smokers. Tobacco Control, 22(6), 406–411. doi: 10.1136/tobaccocontrol-2011-050306.CrossRefPubMedGoogle Scholar
  42. Pasche, B., & Absher, D. (2011). Whole-genome sequencing: a step closer to personalized medicine. JAMA, 305(15), 1596–1597. doi: 10.1001/jama.2011.484.CrossRefPubMedGoogle Scholar
  43. Renwick, A., Thompson, D., Seal, S., Kelly, P., Chagtai, T., Ahmed, M., et al. (2006). ATM mutations that cause ataxia-telangiectasia are breast cancer susceptibility alleles. Nature Genetics, 38(8), 873–875. doi: 10.1038/ng1837.CrossRefPubMedGoogle Scholar
  44. Riedl, C. C., Slobod, E., Jochelson, M., Morrow, M., Goldman, D. A., Gonen, M., & Ulaner, G. A. (2014). Retrospective analysis of 18F-FDG PET/CT for staging asymptomatic breast cancer patients younger than 40 years. Journal of Nuclear Medicine, 55(10), 1578–1583. doi: 10.2967/jnumed.114.143297.CrossRefPubMedPubMedCentralGoogle Scholar
  45. Rutten, L. J., Arora, N. K., Bakos, A. D., Aziz, N., & Rowland, J. (2005). Information needs and sources of information among cancer patients: a systematic review of research (1980–2003). Patient Education and Counseling, 57(3), 250–261. doi: 10.1016/j.pec.2004.06.006.CrossRefPubMedGoogle Scholar
  46. Schmidlen, T. J., Wawak, L., Kasper, R., Garcia-Espana, J. F., Christman, M. F., & Gordon, E. S. (2014). Personalized genomic results: analysis of informational needs. Journal of Genetic Counseling, 23(4), 578–587. doi: 10.1007/s10897-014-9693-8.CrossRefPubMedGoogle Scholar
  47. Selkirk, C. G., Weissman, S. M., Anderson, A., & Hulick, P. J. (2013). Physicians’ preparedness for integration of genomic and pharmacogenetic testing into practice within a major healthcare system. Genetic Testing and Molecular Biomarkers, 17(3), 219–225. doi: 10.1089/gtmb.2012.0165.CrossRefPubMedGoogle Scholar
  48. Sharp, R. R. (2011). Downsizing genomic medicine: approaching the ethical complexity of whole-genome sequencing by starting small. Genetics in Medicine, 13(3), 191–194. doi: 10.1097/GIM.0b013e31820f603f.CrossRefPubMedGoogle Scholar
  49. Sieh, W., Rothstein, J. H., McGuire, V., & Whittemore, A. S. (2014). The role of genome sequencing in personalized breast cancer prevention. Cancer Epidemiology, Biomarkers & Prevention, 23(11), 2322–2327. doi: 10.1158/1055-9965.epi-14-0559.CrossRefGoogle Scholar
  50. Tabor, H. K., Stock, J., Brazg, T., McMillin, M. J., Dent, K. M., Yu, J. H., et al. (2012). Informed consent for whole genome sequencing: a qualitative analysis of participant expectations and perceptions of risks, benefits, and harms. American Journal of Medical Genetics. Part A, 158A(6), 1310–1319. doi: 10.1002/ajmg.a.35328.CrossRefPubMedPubMedCentralGoogle Scholar
  51. Taplin, S. H., Anhang Price, R., Edwards, H. M., Foster, M. K., Breslau, E. S., Chollette, V., et al. (2012). Introduction: Understanding and influencing multilevel factors across the cancer care continuum. Journal of the National Cancer Institute. Monographs, 2012(44), 2–10. doi: 10.1093/jncimonographs/lgs008.CrossRefPubMedPubMedCentralGoogle Scholar
  52. Trujillano, D., Weiss, M. E., Schneider, J., Koster, J., Papachristos, E. B., Saviouk, V., et al. (2015). Next-generation sequencing of the BRCA1 and BRCA2 genes for the genetic diagnostics of hereditary breast and/or ovarian cancer. The Journal of Molecular Diagnostics, 17(2), 162–170. doi: 10.1016/j.jmoldx.2014.11.004.CrossRefPubMedGoogle Scholar
  53. Wright, M. F., Lewis, K. L., Fisher, T. C., Hooker, G. W., Emanuel, T. E., Biesecker, L. G., & Biesecker, B. B. (2014). Preferences for results delivery from exome sequencing/genome sequencing. Genetics in Medicine, 16(6), 442–447. doi: 10.1038/gim.2013.170.CrossRefPubMedGoogle Scholar
  54. Yauch, R. L., & Settleman, J. (2012). Recent advances in pathway-targeted cancer drug therapies emerging from cancer genome analysis. Current Opinion in Genetics & Development, 22(1), 45–49. doi: 10.1016/j.gde.2012.01.003.CrossRefGoogle Scholar
  55. Yu, J. H., Crouch, J., Jamal, S. M., Bamshad, M. J., & Tabor, H. K. (2014). Attitudes of non-African American focus group participants toward return of results from exome and whole genome sequencing. American Journal of Medical Genetics. Part A, 164A(9), 2153–2160. doi: 10.1002/ajmg.a.36610.CrossRefPubMedGoogle Scholar
  56. Zardavas, D., Baselga, J., & Piccart, M. (2013). Emerging targeted agents in metastatic breast cancer. Nature Reviews. Clinical Oncology, 10(4), 191–210. doi: 10.1038/nrclinonc.2013.29.CrossRefPubMedGoogle Scholar

Copyright information

© National Society of Genetic Counselors, Inc. 2016

Authors and Affiliations

  • Joann Seo
    • 1
  • Jennifer Ivanovich
    • 1
  • Melody S. Goodman
    • 1
  • Barbara B. Biesecker
    • 2
  • Kimberly A. Kaphingst
    • 3
    • 4
  1. 1.Division of Public Health Sciences, Department of SurgeryWashington University School of MedicineSt. LouisUSA
  2. 2.Social and Behavioral Research BranchNational Human Genome Research InstituteBethesdaUSA
  3. 3.Department of CommunicationUniversity of UtahSalt Lake CityUSA
  4. 4.Huntsman Cancer InstituteUniversity of UtahSalt Lake CityUSA

Personalised recommendations