Journal of Genetic Counseling

, Volume 23, Issue 4, pp 604–617

Cancer Risk Assessment Using Genetic Panel Testing: Considerations for Clinical Application

  • Susan Hiraki
  • Erica S. Rinella
  • Freya Schnabel
  • Ruth Oratz
  • Harry Ostrer
Next Generation Genetic Counseling

Abstract

With the completion of the Human Genome Project and the development of high throughput technologies, such as next-generation sequencing, the use of multiplex genetic testing, in which multiple genes are sequenced simultaneously to test for one or more conditions, is growing rapidly. Reflecting underlying heterogeneity where a broad range of genes confer risks for one or more cancers, the development of genetic cancer panels to assess these risks represents just one example of how multiplex testing is being applied clinically. There are a number of issues and challenges to consider when conducting genetic testing for cancer risk assessment, and these issues become exceedingly more complex when moving from the traditional single-gene approach to panel testing. Here, we address the practical considerations for clinical use of panel testing for breast, ovarian, and colon cancers, including the benefits, limitations and challenges, genetic counseling issues, and management guidelines.

Keywords

Cancer panels Risk assessment Breast cancer Ovarian cancer Colon cancer 

References

  1. Akushevich, I., Kravchenko, J., Akushevich, L., Ukraintseva, S., Arbeev, K., & Yashin, A. (2011). Cancer risk and behavioral factors, comorbidities, and functional status in the US elderly population. ISRN Oncology, 2011, 1–9. doi:10.5402/2011/415790.CrossRefGoogle Scholar
  2. American Cancer Society recommendations for colorectal cancer early detection. (n.d.). Retrieved April 3, 2013, from http://www.cancer.org/cancer/colonandrectumcancer/moreinformation/colonandrectumcancerearlydetection/colorectal-cancer-early-detection-acs-recommendations
  3. American Cancer Society recommendations for early breast cancer detection in women without breast symptoms. (n.d.). Retrieved April 3, 2013, from http://www.cancer.org/cancer/breastcancer/moreinformation/breastcancerearlydetection/breast-cancer-early-detection-acs-recs
  4. Antoniou, A., Pharoah, P. D. P., Narod, S., Risch, H. A., Eyfjord, J. E., Hopper, J. L., et al. (2003). Average risks of breast and ovarian cancer associated with BRCA1 or BRCA2 mutations detected in case series unselected for family history: a combined analysis of 22 studies. American journal of human genetics, 72(5), 1117–1130. doi:10.1086/375033.PubMedCentralPubMedCrossRefGoogle Scholar
  5. Ataxia-Telangiectasia - GeneReviews - NCBI Bookshelf. (n.d.). Retrieved April 8, 2013, from http://www.ncbi.nlm.nih.gov/books/NBK26468/
  6. Balmana, J., Castells, A., Cervantes, A., & On behalf of the ESMO Guidelines Working Group. (2010). Familial colorectal cancer risk: ESMO clinical practice guidelines. Annals of Oncology, 21(Supplement 5), v78–v81. doi:10.1093/annonc/mdq169.PubMedCrossRefGoogle Scholar
  7. Barrow, E., Robinson, L., Alduaij, W., Shenton, A., Clancy, T., Lalloo, F., et al. (2009). Cumulative lifetime incidence of extracolonic cancers in lynch syndrome: a report of 121 families with proven mutations. Clinical Genetics, 75(2), 141–149. doi:10.1111/j.1399-0004.2008.01125.x.PubMedCrossRefGoogle Scholar
  8. Berg, J. S., Khoury, M. J., & Evans, J. P. (2011). Deploying whole genome sequencing in clinical practice and public health: meeting the challenge one bin at a time. Genetics in Medicine, 13(6), 499–504. doi:10.1097/GIM.0b013e318220aaba.PubMedCrossRefGoogle Scholar
  9. Berliner, J. L., Fay, A. M., Cummings, S. A., Burnett, B., & Tillmanns, T. (2013). NSGC practice guideline: risk assessment and genetic counseling for hereditary breast and ovarian cancer. Journal of Genetic Counseling, 22(2), 155–163. doi:10.1007/s10897-012-9547-1.PubMedCrossRefGoogle Scholar
  10. Bernstein, J. L., Haile, R. W., Stovall, M., Boice, J. D., Shore, R. E., Langholz, B., et al. (2010). Radiation exposure, the ATM gene, and contralateral breast cancer in the Women’s environmental cancer and radiation epidemiology study. JNCI Journal of the National Cancer Institute, 102(7), 475–483. doi:10.1093/jnci/djq055.PubMedCentralCrossRefGoogle Scholar
  11. Birch, J. M., Blair, V., Kelsey, A. M., Evans, D. G., Harris, M., Tricker, K. J., et al. (1998). Cancer phenotype correlates with constitutional TP53 genotype in families with the Li-Fraumeni syndrome. Oncogene, 17(9), 1061–1068. doi:10.1038/sj.onc.1202033.PubMedCrossRefGoogle Scholar
  12. Bisgaard, M. L., Fenger, K., Bülow, S., Niebuhr, E., & Mohr, J. (1994). Familial adenomatous polyposis (FAP): frequency, penetrance, and mutation rate. Human Mutation, 3(2), 121–125. doi:10.1002/humu.1380030206.PubMedCrossRefGoogle Scholar
  13. Boardman, L. A., Thibodeau, S. N., Schaid, D. J., Lindor, N. M., McDonnell, S. K., Burgart, L. J., et al. (1998). Increased risk for cancer in patients with the Peutz-Jeghers syndrome. Annals of Internal Medicine, 128(11), 896–899.PubMedCrossRefGoogle Scholar
  14. Bogdanova, N., Feshchenko, S., Schürmann, P., Waltes, R., Wieland, B., Hillemanns, P., et al. (2008). Nijmegen breakage syndrome mutations and risk of breast cancer. International Journal of Cancer, 122(4), 802–806. doi:10.1002/ijc.23168.CrossRefGoogle Scholar
  15. Bonadona, V., Bonaïti, B., Olschwang, S., Grandjouan, S., Huiart, L., Longy, M., et al. (2011). Cancer risks associated with germline mutations in MLH1, MSH2, and MSH6 genes in lynch syndrome. JAMA: The Journal of the American Medical Association, 305(22), 2304–2310. doi:10.1001/jama.2011.743.CrossRefGoogle Scholar
  16. BreastNext | Ambry Genetics. (n.d.). Retrieved October 11, 2013, from http://www.ambrygen.com/tests/breastnext
  17. Brosens, L. A. A., van Hattem, A., Hylind, L. M., Iacobuzio-Donahue, C., Romans, K. E., Axilbund, J., et al. (2007). Risk of colorectal cancer in juvenile polyposis. Gut, 56(7), 965–967. doi:10.1136/gut.2006.116913.PubMedCentralPubMedCrossRefGoogle Scholar
  18. Brownstein, M. H., Wolf, M., & Bikowski, J. B. (1978). Cowden’s disease: a cutaneous marker of breast cancer. Cancer, 41(6), 2393–2398.PubMedCrossRefGoogle Scholar
  19. Burt, R. (2007). Inheritance of colorectal cancer. Drug Discovery Today: Disease Mechanisms, 4(4), 293–300. doi:10.1016/j.ddmec.2008.05.004.PubMedCentralPubMedCrossRefGoogle Scholar
  20. Burt, R. W., Bishop, D. T., Lynch, H. T., Rozen, P., & Winawer, S. J. (1990). Risk and surveillance of individuals with heritable factors for colorectal cancer. WHO Collaborating Centre for the Prevention of Colorectal Cancer. Bulletin of the World Health Organization, 68(5), 655–665.Google Scholar
  21. Byrnes, G. B., Southey, M. C., & Hopper, J. L. (2008). Are the so-called low penetrance breast cancer genes, ATM, BRIP1, PALB2 and CHEK2, high risk for women with strong family histories? Breast Cancer Research: BCR, 10(3), 208. doi:10.1186/bcr2099.PubMedCentralPubMedCrossRefGoogle Scholar
  22. Casadei, S., Norquist, B. M., Walsh, T., Stray, S., Mandell, J. B., Lee, M. K., et al. (2011). Contribution of inherited mutations in the BRCA2-interacting protein PALB2 to familial breast cancer. Cancer Research, 71(6), 2222–2229. doi:10.1158/0008-5472.CAN-10-3958.PubMedCentralPubMedCrossRefGoogle Scholar
  23. Chao, S., Roberts, J. S., Marteau, T. M., Silliman, R., Cupples, L. A., & Green, R. C. (2008). Health behavior changes after genetic risk assessment for Alzheimer disease: the REVEAL study. Alzheimer Disease and Associated Disorders, 22(1), 94–97. doi:10.1097/WAD.0b013e31815a9dcc.PubMedCentralPubMedCrossRefGoogle Scholar
  24. Chlebowski, R. T. (2002). Weight loss in breast cancer patient management. Journal of Clinical Oncology, 20(4), 1128–1143. doi:10.1200/JCO.20.4.1128.PubMedCrossRefGoogle Scholar
  25. Cho, M. K., Sankar, P., Wolpe, P. R., & Godmilow, L. (1999). Commercialization ofBRCA1/2 testing: practitioner awareness and use of a new genetic test. American Journal of Medical Genetics, 83(3), 157–163. doi:10.1002/(SICI)1096-8628(19990319)83:3<157::AID-AJMG4>3.0.CO;2-G.PubMedCentralPubMedCrossRefGoogle Scholar
  26. Chompret, A., Brugières, L., Ronsin, M., Gardes, M., Dessarps-Freichey, F., Abel, A., et al. (2000). P53 germline mutations in childhood cancers and cancer risk for carrier individuals. British Journal of Cancer, 82(12), 1932–1937. doi:10.1054/bjoc.2000.1167.PubMedCentralPubMedCrossRefGoogle Scholar
  27. Collins, V., Halliday, J., Kahler, S., & Williamson, R. (2001). Parents’ Experiences with genetic counseling after the birth of a baby with a genetic disorder: an exploratory study. Journal of Genetic Counseling, 10(1), 53–72.CrossRefGoogle Scholar
  28. ColoNext | Ambry Genetics. (n.d.). Retrieved October 11, 2013, from http://www.ambrygen.com/tests/colonext
  29. Common Cancer Types - National Cancer Institute. (n.d.). Retrieved October 11, 2013, from http://www.cancer.gov/cancertopics/types/commoncancers#1
  30. Comprehensive Cancer Panel - Genetic Testing Company | The DNA Diagnostic Experts | GeneDx. (n.d.). Retrieved September 27, 2013, from http://www.genedx.com/test-catalog/available-tests/comprehensive-cancer-panel/
  31. Couch, F. J., DeShano, M. L., Blackwood, M. A., Calzone, K., Stopfer, J., Campeau, L., et al. (1997). BRCA1 Mutations in women attending clinics that evaluate the risk of breast cancer. The New England Journal of Medicine, 336(20), 1409–1415. doi:10.1056/NEJM199705153362002.PubMedCrossRefGoogle Scholar
  32. Cybulski, C., Wokolorczyk, D., Jakubowska, A., Huzarski, T., Byrski, T., Gronwald, J., et al. (2011). Risk of breast cancer in women with a CHEK2 mutation with and without a family history of breast cancer. Journal of Clinical Oncology, 29(28), 3747–3752. doi:10.1200/JCO.2010.34.0778.PubMedCrossRefGoogle Scholar
  33. Desjardins, S., Joly Beauparlant, C., Labrie, Y., Ouellette, G., BRCAs, I., & Durocher, F. (2009). Variations in the NBN/NBS1 gene and the risk of breast cancer in non-BRCA1/2 French Canadian families with high risk of breast cancer. BMC Cancer, 9(1), 181. doi:10.1186/1471-2407-9-181.PubMedCentralPubMedCrossRefGoogle Scholar
  34. Domchek, S. M., Bradbury, A., Garber, J. E., Offit, K., & Robson, M. E. (2013). Multiplex genetic testing for cancer susceptibility: Out on the high wire without a Net? Journal of Clinical Oncology, 31(10), 1267–1270. doi:10.1200/JCO.2012.46.9403.PubMedCrossRefGoogle Scholar
  35. Donnelly, L. S., Watson, M., Moynihan, C., Bancroft, E., Evans, D. G. R., Eeles, R., et al. (2013). Reproductive decision-making in young female carriers of a BRCA mutation. Human Reproduction (Oxford, England), 28(4), 1006–1012. doi:10.1093/humrep/des441.CrossRefGoogle Scholar
  36. Elias, S., & Annas, G. J. (1994). Generic consent for genetic screening. The New England Journal of Medicine, 330(22), 1611–1613. doi:10.1056/NEJM199406023302213.PubMedCrossRefGoogle Scholar
  37. Fletcher, O., Easton, D., Anderson, K., Gilham, C., Jay, M., & Peto, J. (2004). Lifetime risks of common cancers among retinoblastoma survivors. JNCI Journal of the National Cancer Institute, 96(5), 357–363. doi:10.1093/jnci/djh058.CrossRefGoogle Scholar
  38. Ford, D., Easton, D. F., Bishop, D. T., Narod, S. A., & Goldgar, D. E. (1994). Risks of cancer in BRCA1-mutation carriers. Breast cancer linkage consortium. Lancet, 343(8899), 692–695.PubMedCrossRefGoogle Scholar
  39. Frank, T. S., Manley, S. A., Olopade, O. I., Cummings, S., Garber, J. E., Bernhardt, B., et al. (1998). Sequence analysis of BRCA1 and BRCA2: correlation of mutations with family history and ovarian cancer risk. Journal of Clinical Oncology: Official Journal of the American Society of Clinical Oncology, 16(7), 2417–2425.Google Scholar
  40. Gail, M. H. (2011). Personalized estimates of breast cancer risk in clinical practice and public health. Statistics in Medicine, 30(10), 1090–1104. doi:10.1002/sim.4187.PubMedCentralPubMedCrossRefGoogle Scholar
  41. genetics/BROCA - Lab Med Test Info. (n.d.). Retrieved February 4, 2013, from http://web.labmed.washington.edu/tests/genetics/BROCA
  42. Getting personal. (2008). Nature, 455(7216), 1007. doi:10.1038/4551007a.
  43. Gilpin, C. A., Carson, N., & Hunter, A. G. (2000). A preliminary validation of a family history assessment form to select women at risk for breast or ovarian cancer for referral to a genetics center. Clinical Genetics, 58(4), 299–308.PubMedCrossRefGoogle Scholar
  44. Goldgar, D. E., Easton, D. F., Byrnes, G. B., Spurdle, A. B., Iversen, E. S., & Greenblatt, M. S. (2008). Genetic evidence and integration of various data sources for classifying uncertain variants into a single model. Human Mutation, 29(11), 1265–1272. doi:10.1002/humu.20897.PubMedCentralPubMedCrossRefGoogle Scholar
  45. Gooding, H. C., Linnenbringer, E. L., Burack, J., Roberts, J. S., Green, R. C., & Biesecker, B. B. (2006). Genetic susceptibility testing for Alzheimer disease: motivation to obtain information and control as precursors to coping with increased risk. Patient Education and Counseling, 64(1–3), 259–267. doi:10.1016/j.pec.2006.03.002.PubMedCrossRefGoogle Scholar
  46. Green, R. C., Roberts, J. S., Cupples, L. A., Relkin, N. R., Whitehouse, P. J., Brown, T., et al. (2009). Disclosure of APOE genotype for risk of Alzheimer’s disease. The New England Journal of Medicine, 361(3), 245–254. doi:10.1056/NEJMoa0809578.PubMedCentralPubMedCrossRefGoogle Scholar
  47. Guilford, P., Humar, B., & Blair, V. (2010). Hereditary diffuse gastric cancer: translation of CDH1 germline mutations into clinical practice. Gastric Cancer: Official Journal of the International Gastric Cancer Association and the Japanese Gastric Cancer Association, 13(1), 1–10. doi:10.1007/s10120-009-0531-x.CrossRefGoogle Scholar
  48. Hearle, N., Schumacher, V., Menko, F. H., Olschwang, S., Boardman, L. A., Gille, J. J. P., et al. (2006). Frequency and spectrum of cancers in the peutz-jeghers syndrome. Clinical Cancer Research: An Official Journal of the American Association for Cancer Research, 12(10), 3209–3215. doi:10.1158/1078-0432.CCR-06-0083.CrossRefGoogle Scholar
  49. Heikkinen, K. (2005). RAD50 and NBS1 are breast cancer susceptibility genes associated with genomic instability. Carcinogenesis, 27(8), 1593–1599. doi:10.1093/carcin/bgi360.CrossRefGoogle Scholar
  50. Heymann, S., Delaloge, S., Rahal, A., Caron, O., Frebourg, T., Barreau, L., et al. (2010). Radio-induced malignancies after breast cancer post-operative radiotherapy in patients with Li- fraumeni syndrome. Radiation Oncology, 5(1), 104. doi:10.1186/1748-717X-5-104.PubMedCentralPubMedCrossRefGoogle Scholar
  51. Hopper, J. L., Southey, M. C., Dite, G. S., Jolley, D. J., Giles, G. G., McCredie, M. R., et al. (1999). Population-based estimate of the average age-specific cumulative risk of breast cancer for a defined set of protein-truncating mutations in BRCA1 and BRCA2. Australian breast cancer family study. Cancer Epidemiology, Biomarkers & Prevention: A Publication of the American Association for Cancer Research, Cosponsored by the American Society of Preventive Oncology, 8(9), 741–747.Google Scholar
  52. Howe, J. R., Roth, S., Ringold, J. C., Summers, R. W., Järvinen, H. J., Sistonen, P., et al. (1998). Mutations in the SMAD4/DPC4 gene in juvenile polyposis. Science (New York, N.Y.), 280(5366), 1086–1088.CrossRefGoogle Scholar
  53. Howe, J. R., Sayed, M. G., Ahmed, A. F., Ringold, J., Larsen-Haidle, J., Merg, A., et al. (2004). The prevalence of MADH4 and BMPR1A mutations in juvenile polyposis and absence of BMPR2, BMPR1B, and ACVR1 mutations. Journal of Medical Genetics, 41(7), 484–491.PubMedCentralPubMedCrossRefGoogle Scholar
  54. Hsu, H.-M., Wang, H.–. C., Chen, S.-T., Hsu, G.–. C., Shen, C.-Y., & Yu, J.–. C. (2007). Breast Cancer Risk Is Associated with the Genes Encoding the DNA Double-Strand Break Repair Mre11/Rad50/Nbs1 Complex. Cancer Epidemiology Biomarkers &amp; Prevention, 16(10), 2024–2032. doi:10.1158/1055-9965.EPI-07-0116.CrossRefGoogle Scholar
  55. Hurley, A. C., Harvey, F. R., Roberts, J. S., Wilson-Chase, C., Lloyd, S., Prest, J., et al. (2005). Genetic susceptibility for Alzheimer’s disease: why did adult offspring seek testing? American Journal of Alzheimer's Disease and Other Dementias, 20(6), 374–381.PubMedCrossRefGoogle Scholar
  56. Julian-Reynier, C. M., Bouchard, L. J., Evans, D. G., Eisinger, F. A., Foulkes, W. D., Kerr, B., et al. (2001). Women’s attitudes toward preventive strategies for hereditary breast or ovarian carcinoma differ from one country to another. Cancer, 92(4), 959–968. doi:10.1002/1097-0142(20010815)92:4<959::AID-CNCR1406>3.0.CO;2-V.PubMedCrossRefGoogle Scholar
  57. Kempers, M. J. E., Kuiper, R. P., Ockeloen, C. W., Chappuis, P. O., Hutter, P., Rahner, N., et al. (2011). Risk of colorectal and endometrial cancers in EPCAM deletion-positive Lynch syndrome: a cohort study. The Lancet Oncology, 12(1), 49–55. doi:10.1016/S1470-2045(10)70265-5.PubMedCentralPubMedCrossRefGoogle Scholar
  58. Khoury, M. J., Gwinn, M., Yoon, P. W., Dowling, N., Moore, C. A., & Bradley, L. (2007). The continuum of translation research in genomic medicine: how can we accelerate the appropriate integration of human genome discoveries into health care and disease prevention? Genetics in Medicine, 9(10), 665–674. doi:10.1097/GIM.0b013e31815699d0 Google Scholar
  59. Khoury, M. J., Clauser, S. B., Freedman, A. N., Gillanders, E. M., Glasgow, R. E., Klein, W. M. P., et al. (2011). Population Sciences, Translational Research, and the Opportunities and Challenges for Genomics to Reduce the Burden of Cancer in the 21st Century. Cancer Epidemiology, Biomarkers & Prevention, 20(10), 2105–2114. doi:10.1158/1055-9965.EPI-11-0481.CrossRefGoogle Scholar
  60. King, M.–. C., Marks, J. H., Mandell, J. B., & New York Breast Cancer Study Group. (2003). Breast and ovarian cancer risks due to inherited mutations in BRCA1 and BRCA2. Science (New York, N.Y.), 302(5645), 643–646. doi:10.1126/science.1088759.CrossRefGoogle Scholar
  61. Lalloo, F., & Evans, D. G. (2012). Familial Breast Cancer. Clinical Genetics, 82(2), 105–114. doi:10.1111/j.1399-0004.2012.01859.x.PubMedCrossRefGoogle Scholar
  62. Lerman, C., & Croyle, R. (1994). Psychological issues in genetic testing for breast cancer susceptibility. Archives of Internal Medicine, 154(6), 609–616.PubMedCrossRefGoogle Scholar
  63. Li-Fraumeni Syndrome - GeneReviews - NCBI Bookshelf. (n.d.). Retrieved April 8, 2013, from http://www.ncbi.nlm.nih.gov/books/NBK1311/
  64. Ligtenberg, M. J. L., Kuiper, R. P., Geurts van Kessel, A., & Hoogerbrugge, N. (2012). EPCAM deletion carriers constitute a unique subgroup of Lynch syndrome patients. Familial Cancer. doi:10.1007/s10689-012-9591-x.PubMedCentralGoogle Scholar
  65. Marees, T., Moll, A. C., Imhof, S. M., de Boer, M. R., Ringens, P. J., & van Leeuwen, F. E. (2008). Risk of second malignancies in survivors of retinoblastoma: more than 40 years of follow-up. Journal of the National Cancer Institute, 100(24), 1771–1779. doi:10.1093/jnci/djn394.PubMedCrossRefGoogle Scholar
  66. Martin, S. A., Lord, C. J., & Ashworth, A. (2010). Therapeutic targeting of the DNA mismatch repair pathway. Clinical Cancer Research: An Official Journal of the American Association for Cancer Research, 16(21), 5107–5113. doi:10.1158/1078-0432.CCR-10-0821.CrossRefGoogle Scholar
  67. Masciari, S., Dillon, D. A., Rath, M., Robson, M., Weitzel, J. N., Balmana, J., et al. (2012). Breast cancer phenotype in women with TP53 germline mutations: a Li-Fraumeni syndrome consortium effort. Breast Cancer Research and Treatment, 133(3), 1125–1130. doi:10.1007/s10549-012-1993-9.PubMedCentralPubMedCrossRefGoogle Scholar
  68. McBride, C. M., Lipkus, I. M., Jolly, D., & Lyna, P. (2005). Interest in testing for genetic susceptibility to lung cancer among Black college students “at risk” of becoming cigarette smokers. Cancer Epidemiology, Biomarkers & Prevention: A Publication of the American Association for Cancer Research, Cosponsored by the American Society of Preventive Oncology, 14(12), 2978–2981. doi:10.1158/1055-9965.EPI-05-0269.CrossRefGoogle Scholar
  69. Mealiffe, M. E., Stokowski, R. P., Rhees, B. K., Prentice, R. L., Pettinger, M., & Hinds, D. A. (2010). Assessment of Clinical Validity of a Breast Cancer Risk Model Combining Genetic and Clinical Information. JNCI Journal of the National Cancer Institute, 102(21), 1618–1627. doi:10.1093/jnci/djq388.PubMedCentralCrossRefGoogle Scholar
  70. Meijers-Heijboer, H., van den Ouweland, A., Klijn, J., Wasielewski, M., de Snoo, A., Oldenburg, R., et al. (2002). Low-penetrance susceptibility to breast cancer due to CHEK2(*)1100delC in noncarriers of BRCA1 or BRCA2 mutations. Nature Genetics, 31(1), 55–59. doi:10.1038/ng879.PubMedCrossRefGoogle Scholar
  71. Meiser, B., Butow, P., Friedlander, M., Schnieden, V., Gattas, M., Kirk, J., et al. (2000). Intention to undergo prophylactic bilateral mastectomy in women at increased risk of developing hereditary breast cancer. Journal of Clinical Oncology: Official Journal of the American Society of Clinical Oncology, 18(11), 2250–2257.Google Scholar
  72. Meldrum, C., Doyle, M. A., & Tothill, R. W. (2011). Next-generation sequencing for cancer diagnostics: a practical perspective. The Clinical Biochemist Reviews/Australian Association of Clinical Biochemists, 32(4), 177–195.PubMedCentralPubMedGoogle Scholar
  73. Multiplex genetic testing. The Council on Ethical and Judicial Affairs, American Medical Association. (1998). The Hastings Center Report, 28(4), 15–21.Google Scholar
  74. Narod, S. A. (2010). Testing for CHEK2 in the cancer genetics clinic: ready for prime time? Clinical Genetics, 78(1), 1–7. doi:10.1111/j.1399-0004.2010.01402.x.PubMedCrossRefGoogle Scholar
  75. Narod, S. A., Moody, J. R. K., Rosen, B., Fan, I., Risch, A., Sun, P., et al. (2013). Estimating survival rates after ovarian cancer among women tested for BRCA1 and BRCA2 mutations. Clinical Genetics, 83(3), 232–237. doi:10.1111/j.1399-0004.2012.01906.x.PubMedCrossRefGoogle Scholar
  76. Next-gen Cancer Panels | Ambry Genetics. (n.d.). Retrieved February 4, 2013, from http://ambrygen.com/next-gen-cancer-panels
  77. Ng, P. C., Murray, S. S., Levy, S., & Venter, J. C. (2009). An agenda for personalized medicine. Nature, 461(7265), 724–726. doi:10.1038/461724a.PubMedCrossRefGoogle Scholar
  78. Nicolaides, N. C., Papadopoulos, N., Liu, B., Wei, Y. F., Carter, K. C., Ruben, S. M., et al. (1994). Mutations of two PMS homologues in hereditary nonpolyposis colon cancer. Nature, 371(6492), 75–80. doi:10.1038/371075a0.Google Scholar
  79. Ormond, K. E., Wheeler, M. T., Hudgins, L., Klein, T. E., Butte, A. J., Altman, R. B., et al. (2010). Challenges in the clinical application of whole-genome sequencing. The Lancet, 375(9727), 1749–1751. doi:10.1016/S0140-6736(10)60599-5.CrossRefGoogle Scholar
  80. OvaNext | Ambry Genetics. (n.d.). Retrieved October 11, 2013, from http://www.ambrygen.com/tests/ovanext
  81. Peltomäki, P. (2003). Role of DNA mismatch repair defects in the pathogenesis of human cancer. Journal of Clinical Oncology: Official Journal of the American Society of Clinical Oncology, 21(6), 1174–1179.CrossRefGoogle Scholar
  82. Peltomäki, P., & Vasen, H. F. (1997). Mutations predisposing to hereditary nonpolyposis colorectal cancer: database and results of a collaborative study. The International Collaborative Group on Hereditary Nonpolyposis Colorectal Cancer. Gastroenterology, 113(4), 1146–1158.Google Scholar
  83. Pennington, K. P., & Swisher, E. M. (2012). Hereditary ovarian cancer: beyond the usual suspects. Gynecologic Oncology, 124(2), 347–353. doi:10.1016/j.ygyno.2011.12.415.PubMedCrossRefGoogle Scholar
  84. Pharoah, P., Guilford, P., Caldas, C., & Theinternationalgastriccancer. (2001). Incidence of gastric cancer and breast cancer in CDH1 (E-cadherin) mutation carriers from hereditary diffuse gastric cancer families. Gastroenterology, 121(6), 1348–1353. doi:10.1053/gast.2001.29611.PubMedCrossRefGoogle Scholar
  85. Pijpe, A., Andrieu, N., Easton, D. F., Kesminiene, A., Cardis, E., Nogues, C., et al. (2012). Exposure to diagnostic radiation and risk of breast cancer among carriers of BRCA1/2 mutations: retrospective cohort study (GENE-RAD-RISK). BMJ, 345(sep06 2), e5660–e5660. doi:10.1136/bmj.e5660.PubMedCentralPubMedCrossRefGoogle Scholar
  86. Rahman, N., & Scott, R. H. (2007). Cancer genes associated with phenotypes in monoallelic and biallelic mutation carriers: new lessons from old players. Human Molecular Genetics, 16(Spec No 1), R60–R66. doi:10.1093/hmg/ddm026.PubMedCrossRefGoogle Scholar
  87. Rennert, G., Lejbkowicz, F., Cohen, I., Pinchev, M., Rennert, H. S., & Barnett-Griness, O. (2012). MutYH mutation carriers have increased breast cancer risk. Cancer, 118(8), 1989–1993. doi:10.1002/cncr.26506.PubMedCrossRefGoogle Scholar
  88. Richards, C. S., Bale, S., Bellissimo, D. B., Das, S., Grody, W. W., Hegde, M. R., et al. (2008). ACMG recommendations for standards for interpretation and reporting of sequence variations: Revisions 2007. Genetics in Medicine: Official Journal of the American College of Medical Genetics, 10(4), 294–300. doi:10.1097/GIM.0b013e31816b5cae.CrossRefGoogle Scholar
  89. Riley, B. D., Culver, J. O., Skrzynia, C., Senter, L. A., Peters, J. A., Costalas, J. W., et al. (2012). Essential elements of genetic cancer risk assessment, counseling, and testing: updated recommendations of the National Society of Genetic Counselors. Journal of Genetic Counseling, 21(2), 151–161. doi:10.1007/s10897-011-9462-x.PubMedCrossRefGoogle Scholar
  90. Rinella, E. S., Shao, Y., Yackowski, L., Pramanik, S., Oratz, R., Schnabel, F., et al. (2013). Genetic variants associated with breast cancer risk for Ashkenazi Jewish women with strong family histories but no identifiable BRCA1/2 mutation. Human Genetics, 132(5), 523–536. doi:10.1007/s00439-013-1269-4.PubMedCentralPubMedCrossRefGoogle Scholar
  91. Roberts, J. S., LaRusse, S. A., Katzen, H., Whitehouse, P. J., Barber, M., Post, S. G., et al. (2003). Reasons for seeking genetic susceptibility testing among first-degree relatives of people with Alzheimer disease. Alzheimer Disease and Associated Disorders, 17(2), 86–93.PubMedCrossRefGoogle Scholar
  92. Robson, M. E., Storm, C. D., Weitzel, J., Wollins, D. S., & Offit, K. (2010). American Society of Clinical Oncology policy statement update: genetic and genomic testing for cancer susceptibility. Journal of Clinical Oncology: Official Journal of the American Society of Clinical Oncology, 28(5), 893–901. doi:10.1200/JCO.2009.27.0660.CrossRefGoogle Scholar
  93. Rubinstein, W. S., O’Neill, S. M., Peters, J. A., Rittmeyer, L. J., & Stadler, M. P. (2002). Mathematical modeling for breast cancer risk assessment. State of the art and role in medicine. Oncology (Williston Park, N.Y.), 16(8), 1082–1094. discussion 1094, 1097–1099.Google Scholar
  94. Rubinstein, W. S., Jiang, H., Dellefave, L., & Rademaker, A. W. (2009). Cost-effectiveness of population-based BRCA1/2 testing and ovarian cancer prevention for Ashkenazi Jews: a call for dialogue. Genetics in Medicine: Official Journal of the American College of Medical Genetics, 11(9), 629–639. doi:10.1097/GIM.0b013e3181afd322.CrossRefGoogle Scholar
  95. Saadatmand, S., Rutgers, E. J. T., Tollenaar, R. A. E. M., Zonderland, H. M., Ausems, M. G. E. M., Keymeulen, K. B. M. I., et al. (2012). Breast density as indicator for the use of mammography or MRI to screen women with familial risk for breast cancer (FaMRIsc): a multicentre randomized controlled trial. BMC Cancer, 12, 440. doi:10.1186/1471-2407-12-440.PubMedCentralPubMedCrossRefGoogle Scholar
  96. Schlich-Bakker, K. J., ten Kroode, H. F. J., & Ausems, M. G. E. M. (2006). A literature review of the psychological impact of genetic testing on breast cancer patients. Patient Education and Counseling, 62(1), 13–20. doi:10.1016/j.pec.2005.08.012.PubMedCrossRefGoogle Scholar
  97. Schwartz, R. S., & D’Andrea, A. D. (2010). Susceptibility Pathways in Fanconi’s Anemia and Breast Cancer. New England Journal of Medicine, 362(20), 1909–1919. doi:10.1056/NEJMra0809889.CrossRefGoogle Scholar
  98. Seal, S., Thompson, D., Renwick, A., Elliott, A., Kelly, P., Barfoot, R., et al. (2006). Truncating mutations in the Fanconi anemia J gene BRIP1 are low-penetrance breast cancer susceptibility alleles. Nature Genetics, 38(11), 1239–1241. doi:10.1038/ng1902.PubMedCrossRefGoogle Scholar
  99. Secretary’s Advisory Committee on Genetics, Health, and Society. (2006, February). Coverage and Reimbursement of Genetic Tests and Services.Google Scholar
  100. Senter, L., Clendenning, M., Sotamaa, K., Hampel, H., Green, J., Potter, J. D., et al. (2008). The clinical phenotype of Lynch syndrome due to germ-line PMS2 mutations. Gastroenterology, 135(2), 419–428. doi:10.1053/j.gastro.2008.04.026.PubMedCentralPubMedCrossRefGoogle Scholar
  101. Shanley, S., Fung, C., Milliken, J., Leary, J., Barnetson, R., Schnitzler, M., et al. (2009). Breast cancer immunohistochemistry can be useful in triage of some HNPCC families. Familial Cancer, 8(3), 251–255. doi:10.1007/s10689-008-9226-4.PubMedCrossRefGoogle Scholar
  102. Sherman, K. A., Miller, S. M., Shaw, L.-K., Cavanagh, K., & Sheinfeld Gorin, S. (2013). Psychosocial approaches to participation in BRCA1/2 genetic risk assessment among African American women: a systematic review. Journal of Community Genetics. doi:10.1007/s12687-013-0164-y.PubMedCentralPubMedGoogle Scholar
  103. Sistemas Genómicos - Working areas - Biomedicine - Medical Genetics Unit - Oncology. (n.d.). Retrieved October 31, 2013, from https://www.sistemasgenomicos.com/web_sg/webing/areas-biomedicina-ugm3.php
  104. Stacey, S. N., Sulem, P., Johannsson, O. T., Helgason, A., Gudmundsson, J., Kostic, J. P., et al. (2006). The BARD1 Cys557Ser Variant and Breast Cancer Risk in Iceland. PLoS Medicine, 3(7), e217. doi:10.1371/journal.pmed.0030217.PubMedCentralPubMedCrossRefGoogle Scholar
  105. Starink, T. M., van der Veen, J. P., Arwert, F., de Waal, L. P., de Lange, G. G., Gille, J. J., et al. (1986). The Cowden syndrome: a clinical and genetic study in 21 patients. Clinical genetics, 29(3), 222–233.PubMedCrossRefGoogle Scholar
  106. Starita, L. M., & Parvin, J. D. (2006). Substrates of the BRCA1-dependent ubiquitin ligase. Cancer Biology & Therapy, 5(2), 137–141.CrossRefGoogle Scholar
  107. Supreme Court Invalidates Patents on Breast and Ovarian Cancer Genes | American Civil Liberties Union. (n.d.). Retrieved October 14, 2013, from https://www.aclu.org/womens-rights/supreme-court-invalidates-patents-breast-and-ovarian-cancer-genes
  108. Swan, M. (2010). Multigenic condition risk assessment in direct-to-consumer genomic services. Genetics in Medicine, 12(5), 279–288. doi:10.1097/GIM.0b013e3181d5f73b.PubMedCrossRefGoogle Scholar
  109. Swift, M., Morrell, D., Massey, R. B., & Chase, C. L. (1991). Incidence of cancer in 161 families affected by ataxia-telangiectasia. The New England Journal of Medicine, 325(26), 1831–1836. doi:10.1056/NEJM199112263252602.PubMedCrossRefGoogle Scholar
  110. Tabor, H. K., Stock, J., Brazg, T., McMillin, M. J., Dent, K. M., Yu, J.–. H., et al. (2012). Informed consent for whole genome sequencing: A qualitative analysis of participant expectations and perceptions of risks, benefits, and harms. American Journal of Medical Genetics Part A, 158A(6), 1310–1319. doi:10.1002/ajmg.a.35328.PubMedCentralPubMedCrossRefGoogle Scholar
  111. Tan, M.–. H., Mester, J. L., Ngeow, J., Rybicki, L. A., Orloff, M. S., & Eng, C. (2012). Lifetime cancer risks in individuals with germline PTEN mutations. Clinical Cancer Research: an Official Journal of the American Association for Cancer Research, 18(2), 400–407. doi:10.1158/1078-0432.CCR-11-2283.CrossRefGoogle Scholar
  112. Tavtigian, S. V., Greenblatt, M. S., Goldgar, D. E., & Boffetta, P. (2008). Assessing pathogenicity: overview of results from the IARC Unclassified Genetic Variants Working Group. Human Mutation, 29(11), 1261–1264. doi:10.1002/humu.20903.PubMedCentralPubMedCrossRefGoogle Scholar
  113. Thompson, D., Duedal, S., Kirner, J., McGuffog, L., Last, J., Reiman, A., et al. (2005). Cancer risks and mortality in heterozygous ATM mutation carriers. Journal of the National Cancer Institute, 97(11), 813–822. doi:10.1093/jnci/dji141.PubMedCrossRefGoogle Scholar
  114. Thorstenson, Y. R., Roxas, A., Kroiss, R., Jenkins, M. A., Yu, K. M., Bachrich, T., et al. (2003). Contributions of ATM mutations to familial breast and ovarian cancer. Cancer Research, 63(12), 3325–3333.PubMedGoogle Scholar
  115. Trill, M. D., & Holland, J. (1993). Cross-cultural differences in the care of patients with cancer. General Hospital Psychiatry, 15(1), 21–30. doi:10.1016/0163-8343(93)90087-5.PubMedCrossRefGoogle Scholar
  116. Tumor Syndromes (n.d.). Retrieved February 25th, 2014, from http://www.cegat.de/Tumor-syndromes_l=1_171.html.
  117. Tung, N., & Silver, D. P. (2011). Chek2 DNA damage response pathway and inherited breast cancer risk. Journal of Clinical Oncology: Official Journal of the American Society of Clinical Oncology, 29(28), 3813–3815. doi:10.1200/JCO.2011.37.1476.CrossRefGoogle Scholar
  118. Vasen, H. F., Stormorken, A., Menko, F. H., Nagengast, F. M., Kleibeuker, J. H., Griffioen, G., et al. (2001). MSH2 mutation carriers are at higher risk of cancer than MLH1 mutation carriers: a study of hereditary nonpolyposis colorectal cancer families. Journal of Clinical Oncology: Official Journal of the American Society of Clinical Oncology, 19(20), 4074–4080.Google Scholar
  119. Vernarelli, J. A., Roberts, J. S., Hiraki, S., Chen, C. A., Cupples, L. A., & Green, R. C. (2010). Effect of Alzheimer disease genetic risk disclosure on dietary supplement use. The American Journal of Clinical Nutrition, 91(5), 1402–1407. doi:10.3945/ajcn.2009.28981.PubMedCentralPubMedCrossRefGoogle Scholar
  120. Walsh, T., Lee, M. K., Casadei, S., Thornton, A. M., Stray, S. M., Pennil, C., et al. (2010). Detection of inherited mutations for breast and ovarian cancer using genomic capture and massively parallel sequencing. Proceedings of the National Academy of Sciences of the United States of America, 107(28), 12629–12633. doi:10.1073/pnas.1007983107.PubMedCentralPubMedCrossRefGoogle Scholar
  121. Wang, Y., Cortez, D., Yazdi, P., Neff, N., Elledge, S. J., & Qin, J. (2000). BASC, a super complex of BRCA1-associated proteins involved in the recognition and repair of aberrant DNA structures. Genes & Development, 14(8), 927–939.Google Scholar
  122. Weischer, M., Bojesen, S. E., Ellervik, C., Tybjaerg-Hansen, A., & Nordestgaard, B. G. (2008). CHEK2*1100delC genotyping for clinical assessment of breast cancer risk: meta-analyses of 26,000 patient cases and 27,000 controls. Journal of Clinical Oncology: Official Journal of the American Society of Clinical Oncology, 26(4), 542–548. doi:10.1200/JCO.2007.12.5922.CrossRefGoogle Scholar
  123. White, M., & Dorman, S. (2000). Confronting Information Overload. Journal of School Health, 70(4), 160–161.CrossRefGoogle Scholar
  124. Williams, C., Brunskill, S., Altman, D., Briggs, A., Campbell, H., Clarke, M., et al. (2006). Cost-effectiveness of using prognostic information to select women with breast cancer for adjuvant systemic therapy. Health Technology Assessment (Winchester, England), 10(34), iii–iv. ix–xi, 1–204.Google Scholar
  125. Wu, X., Platt, J. L., & Cascalho, M. (2003). Dimerization of MLH1 and PMS2 Limits Nuclear Localization of MutL. Molecular and Cellular Biology, 23(9), 3320–3328. doi:10.1128/MCB.23.9.3320-3328.2003.PubMedCentralPubMedCrossRefGoogle Scholar
  126. Yasmeen, S., Hubbard, R. A., Romano, P. S., Zhu, W., Geller, B. M., Onega, T., et al. (2012). Risk of advanced-stage breast cancer among older women with comorbidities. Cancer Epidemiology, Biomarkers & Prevention: A Publication of the American Association for Cancer Research, Cosponsored by the American Society of Preventive Oncology, 21(9), 1510–1519. doi:10.1158/1055-9965.EPI-12-0320.CrossRefGoogle Scholar
  127. Zick, C. D., Mathews, C. J., Roberts, J. S., Cook-Deegan, R., Pokorski, R. J., & Green, R. C. (2005). Genetic testing for Alzheimer’s disease and its impact on insurance purchasing behavior. Health Affairs (Project Hope), 24(2), 483–490. doi:10.1377/hlthaff.24.2.483.CrossRefGoogle Scholar

Copyright information

© National Society of Genetic Counselors, Inc. 2014

Authors and Affiliations

  • Susan Hiraki
    • 1
  • Erica S. Rinella
    • 2
  • Freya Schnabel
    • 2
  • Ruth Oratz
    • 3
  • Harry Ostrer
    • 1
  1. 1.Department of PathologyAlbert Einstein College of MedicineBronxUSA
  2. 2.Department of SurgeryNew York University Langone Medical CenterNew YorkUSA
  3. 3.Department of MedicineNew York University School of MedicineNew YorkUSA

Personalised recommendations