Journal of Genetic Counseling

, Volume 23, Issue 4, pp 594–603 | Cite as

Points to Consider in the Clinical Use of NGS Panels for Mitochondrial Disease: An Analysis of Gene Inclusion and Consent Forms

  • Julia Platt
  • Rachel Cox
  • Gregory M. Enns
Next Generation Genetic Counseling


Mitochondrial next generation sequencing (NGS) panels offer single-step analysis of the numerous nuclear genes involved in the structure, function, and maintenance of mitochondria. However, the complexities of mitochondrial biology and genetics raise points for consideration in clinical use of these tests. To understand the current status of mitochondrial genetic testing, we assessed the gene offerings and consent forms of mitochondrial NGS panels available from seven US-based clinical laboratories. The NGS panels varied markedly in number of genes (101–1204 genes), and the proportion of genes causing “classic” mitochondrial diseases and their phenocopies ranged widely between labs (18 %–94 % of panel contents). All panels included genes not associated with classic mitochondrial diseases (6 %–28 % of panel contents), including genes causing adult-onset neurodegenerative disorders, cancer predisposition, and other genetic syndromes or inborn errors of metabolism. Five of the panels included genes that are not listed in OMIM to be associated with a disease phenotype (5 %–49 % of panel contents). None of the consent documents reviewed had options for patient preference regarding receipt of incidental findings. These findings raise points of discussion applicable to mitochondrial diagnostics, but also to the larger arenas of exome and genome sequencing, including the need to consider the boundaries between clinical and research testing, the necessity of appropriate informed consent, and the responsibilities of clinical laboratories and clinicians. Based on these findings, we recommend careful evaluation by laboratories of the genes offered on NGS panels, clear communication of the predicted phenotypes, and revised consent forms to allow patients to make choices about receiving incidental findings. We hope that our analysis and recommendations will help to maximize the considerable clinical utility of NGS panels for the diagnosis of mitochondrial disease.


Mitochondrial disease diagnostics Clinical gene panel Mitochondrial NGS panel Informed consent 



Many thanks to the clinical laboratories, whose hard work provides valuable diagnostic testing options for patients with rare genetic diseases. Thanks to Monisha Shah for her assistance with statistics.


Julia Platt, Rachel Cox, and Gregory Enns declare that they have no conflict of interest. No animal or human studies were carried out by the authors for this article.

Supplementary material

10897_2013_9683_MOESM1_ESM.xlsx (94 kb)
ESM 1 (XLSX 94 kb)


  1. ACMG Board of Directors. (2012). Points to consider in the clinical application of genomic sequencing. Genetics in Medicine, 14(8), 759–761. doi: 10.1038/gim.2012.74.CrossRefGoogle Scholar
  2. Al-Chalabi, A., Jones, A., Troakes, C., King, A., Al-Sarraj, S., & van den Berg, L. H. (2012). The genetics and neuropathology of amyotrophic lateral sclerosis. Acta Neuropathologica, 124(3), 339–352. doi: 10.1007/s00401-012-1022-4.PubMedCrossRefGoogle Scholar
  3. Barletta, J. A., & Hornick, J. L. (2012). Succinate dehydrogenase-deficient tumors: diagnostic advances and clinical implications. Advances in Anatomic Pathology, 19(4), 193–203. doi: 10.1097/PAP.0b013e31825c6bc6.PubMedCrossRefGoogle Scholar
  4. Bernier, F. P., Boneh, A., Dennett, X., Chow, C. W., Cleary, M. A., & Thorburn, D. R. (2002). Diagnostic criteria for respiratory chain disorders in adults and children. Neurology, 59(9), 1406–1411.PubMedCrossRefGoogle Scholar
  5. Biesecker, L. G. (2012). Opportunities and challenges for the integration of massively parallel genomic sequencing into clinical practice: lessons from the ClinSeq project. Genetics in Medicine, 14(4), 393–398. doi: 10.1038/gim.2011.78.PubMedCentralPubMedCrossRefGoogle Scholar
  6. Calvo, S. E., & Mootha, V. K. (2010). The mitochondrial proteome and human disease. Annual Review of Genomics and Human Genetics, 11, 25–44. doi: 10.1146/annurev-genom-082509-141720.PubMedCrossRefGoogle Scholar
  7. Calvo, S. E., Compton, A. G., Hershman, S. G., Lim, S. C., Lieber, D. S., Tucker, E. J., et al. (2012). Molecular diagnosis of infantile mitochondrial disease with targeted next-generation sequencing. Science Translational Medicine, 4(118), 118ra110. doi: 10.1126/scitranslmed.3003310.CrossRefGoogle Scholar
  8. Delonlay, P., Rötig, A., & Sarnat, H. B. (2013). Respiratory chain deficiencies. Handbook of Clinical Neurology, 113, 1651–1666. doi: 10.1016/B978-0-444-59565-2.00033-2.PubMedCrossRefGoogle Scholar
  9. DiMauro, S., & Schon, E. A. (2003). Mitochondrial respiratory-chain diseases. New England Journal of Medicine, 348(26), 2656–2668. doi: 10.1056/NEJMra022567.PubMedCrossRefGoogle Scholar
  10. Goldstein, A. C., Bhatia, P., & Vento, J. M. (2013). Mitochondrial disease in childhood: nuclear encoded. Neurotherapeutics, 10(2), 212–226. doi: 10.1007/s13311-013-0185-6.PubMedCentralPubMedCrossRefGoogle Scholar
  11. Green, R. C., Berg, J. S., Grody, W. W., Kalia, S. S., Korf, B. R., Martin, C. L., et al. (2013). ACMG recommendations for reporting of incidental findings in clinical exome and genome sequencing. Genetics in Medicine. doi: 10.1038/gim.2013.73.Google Scholar
  12. Jamal, S. M., Yu, J. H., Chong, J. X., Dent, K. M., Conta, J. H., Tabor, H. K., et al. (2013). Practices and policies of clinical exome sequencing providers: analysis and implications. American Journal of Medical Genetics Part A. doi: 10.1002/j.1552-4833.2013.35942.x.Google Scholar
  13. Kirby, D. M., & Thorburn, D. R. (2008). Approaches to finding the molecular basis of mitochondrial oxidative phosphorylation disorders. Twin Research and Human Genetics, 11(4), 395–411. doi: 10.1375/twin.11.4.395.PubMedCrossRefGoogle Scholar
  14. McCormick, E., Place, E., & Falk, M. J. (2013). Molecular genetic testing for mitochondrial disease: from one generation to the next. Neurotherapeutics, 10(2), 251–261. doi: 10.1007/s13311-012-0174-1.PubMedCentralPubMedCrossRefGoogle Scholar
  15. Nunnari, J., & Suomalainen, A. (2012). Mitochondria: in sickness and in health. Cell, 148(6), 1145–1159. doi: 10.1016/j.cell.2012.02.035.PubMedCrossRefGoogle Scholar
  16. Pagliarini, D. J., Calvo, S. E., Chang, B., Sheth, S. A., Vafai, S. B., Ong, S. E., et al. (2008). A mitochondrial protein compendium elucidates complex I disease biology. Cell, 134(1), 112–123. doi: 10.1016/j.cell.2008.06.016.PubMedCentralPubMedCrossRefGoogle Scholar
  17. Rosen, D. R. (1993). Mutations in Cu/Zn superoxide dismutase gene are associated with familial amyotrophic lateral sclerosis. Nature, 364(6435), 362. doi: 10.1038/364362c0.PubMedGoogle Scholar
  18. Ross, L. F., Saal, H. M., David, K. L., Anderson, R. R., & American Academy of Pediatrics; American College of Medical Genetics and Genomics. (2013). Technical report: ethical and policy issues in genetic testing and screening of children. Genetics in Medicine, 15(3), 234–245. doi: 10.1038/gim.2012.176.PubMedCrossRefGoogle Scholar
  19. Skladal, D., Halliday, J., & Thorburn, D. R. (2003). Minimum birth prevalence of mitochondrial respiratory chain disorders in children. Brain, 126(Pt 8), 1905–1912. doi: 10.1093/brain/awg170.PubMedCrossRefGoogle Scholar
  20. Tucker, E. J., Compton, A. G., & Thorburn, D. R. (2010). Recent advances in the genetics of mitochondrial encephalopathies. Current Neurology and Neuroscience Reports, 10(4), 277–285. doi: 10.1007/s11910-010-0112-8.PubMedCrossRefGoogle Scholar
  21. Vento, J. M., & Pappa, B. (2013). Genetic counseling in mitochondrial disease. Neurotherapeutics, 10(2), 243–250. doi: 10.1007/s13311-012-0173-2.PubMedCentralPubMedCrossRefGoogle Scholar
  22. Wong, L. J. (2013). Next generation molecular diagnosis of mitochondrial disorders. Mitochondrion, 13(4), 379–387. doi: 10.1016/j.mito.2013.02.001.PubMedCrossRefGoogle Scholar

Copyright information

© National Society of Genetic Counselors, Inc. 2014

Authors and Affiliations

  1. 1.Department of Pediatrics, Lucile Packard Children’s HospitalStanford UniversityStanfordUSA

Personalised recommendations