Journal of Genetic Counseling

, Volume 23, Issue 4, pp 474–488 | Cite as

A Qualitative Study of Healthcare Providers’ Perspectives on the Implications of Genome-Wide Testing in Pediatric Clinical Practice

  • Marian ReiffEmail author
  • Rebecca Mueller
  • Surabhi Mulchandani
  • Nancy B. Spinner
  • Reed E. Pyeritz
  • Barbara A. Bernhardt
Original Research


The utilization of genome-wide chromosomal microarray analysis (CMA) in pediatric clinical practice provides an opportunity to consider how genetic diagnostics is evolving, and to prepare for the clinical integration of genome-wide sequencing technologies. We conducted semi-structured interviews with 15 healthcare providers (7 genetic counselors, 4 medical geneticists, and 4 non-genetics providers) to investigate the impact of CMA on clinical practice, and implications for providers, patients and families. Interviews were analyzed qualitatively using content analysis. Most providers reported that genomic testing enhanced their professional experience and was beneficial to patients, primarily due to the improved diagnostic rate compared with earlier chromosomal studies. Other effects on practice included moving towards genotype-first diagnosis and broadening indications for chromosomal testing. Opinions varied concerning informed consent and disclosure of results. The duty to disclose incidental findings (IFs) was noted; however concerns were raised about potential psychosocial harms of disclosing pre-symptomatic findings. Tensions were revealed between the need for comprehensive informed consent for all families and the challenges of communicating time-consuming and potentially anxiety-provoking information regarding uncertain and incidental findings that may be relevant only in rare cases. Genetic counselors can play an important role in liaising with families, health professionals and testing laboratories, providing education and guidance to non-genetics providers, and enabling families to receive adequate pre-and post-test information and follow-up care.


Genomics Uncertainty Incidental findings Clinical pediatrics Qualitative 



This study was funded by the National Human Genome Research Institute of the National Institutes of Health (NIH) supplement PA-04-126 to Penn CIGHT P50 HG004487. The opinions in this report do not reflect the views of the NIH.

Conflict of interest

The authors declare no conflict of interest with respect to the manuscript.


  1. Abdul-Karim, R., Berkman, B. E., Wendler, D., Rid, A., Khan, J., Badgett, T., & Hull, S. C. (2013). Disclosure of Incidental findings from next-generation sequencing in pediatric genomic research. Pediatrics, 131(3), 564–571.PubMedPubMedCentralCrossRefGoogle Scholar
  2. Ali-Khan, S. E., Daar, A. S., Shuman, C., Ray, P. N., & Scherer, S. W. (2009). Whole genome scanning: Resolving clinical diagnosis and management amidst complex data. Pediatric Research, 66(4), 357–363.CrossRefGoogle Scholar
  3. Aronson, S. J., Clark, E. H., Varugheese, M., Baxter, S., Babb, L. J., & Rehm, H. L. (2012). Communicating new knowledge on previously reported genetic variants. Genetics in Medicine, 14(8), 713–719.PubMedPubMedCentralCrossRefGoogle Scholar
  4. Bazeley, P. (2007). Qualitative analysis with Nvivo. Thousand Oaks: Sage Publications Ltd.Google Scholar
  5. Beaudet, A. L., & Belmont, J. W. (2008). Array-based DNA diagnostics: Let the revolution begin. Annu. Rev. Med., 59, 113–129.CrossRefGoogle Scholar
  6. Berg, J. S., Khoury, M. J., & Evans, J. P. (2011). Deploying whole genome sequencing in clinical practice and public health: Meeting the challenge one bin at a time. Genetics in Medicine, 13(6), 499–504.PubMedPubMedCentralCrossRefGoogle Scholar
  7. Bernard, H. R. (2002). Qualitative data analysis I: Text analysis. Research Methods in Anthropology (Qualitative and Quantitative Approaches) (Vol. 3rd, pp. 440–488). Walnut Creek: AltaMira Press.Google Scholar
  8. Bernard, H. R. (2012). Social research methods: Qualitative and quantitative approaches Sage Publications, Incorporated.Google Scholar
  9. Boone, P. M., Soens, Z. T., Campbell, I. M., Stankiewicz, P., Cheung, S. W., Patel, A., et al. (2013). Incidental copy-number variants identified by routine genome testing in a clinical population. Genetics in Medicine, 15(1), 45–54.PubMedPubMedCentralCrossRefGoogle Scholar
  10. Christenhusz, G. M., Devriendt, K., & Dierickx, K. (2013). To tell or not to tell? A systematic review of ethical reflections on incidental findings arising in genetics contexts. European Journal of Human Genetics, 21, 248–255.CrossRefGoogle Scholar
  11. Cody, J. (2009). Reply to letter from Drs. Ledbetter, Saul, and Moeschler. Genetics in Medicine, 11(9), 682.CrossRefGoogle Scholar
  12. Cohen, J., Hoon, A., & Wilms Floet, A. M. (2013). Providing family guidance in rapidly shifting sand: informed consent for genetic testing. Developmental Medicine & Child Neurology, 56(1), 766–768.Google Scholar
  13. Darilek, S., Ward, P., Pursley, A., Plunkett, K., Furman, P., Magoulas, P., et al. (2008). Pre-and postnatal genetic testing by array-comparative genomic hybridization: genetic counseling perspectives. Genetics in Medicine, 10(1), 13–18.PubMedPubMedCentralCrossRefGoogle Scholar
  14. Deak, K. L., Horn, S. R., & Rehder, C. W. (2011). The evolving picture of microdeletion/microduplication syndromes in the age of microarray analysis: Variable expressivity and genomic complexity. Clinics in Laboratory Medicine, 31(4), 543–64. viii.CrossRefGoogle Scholar
  15. Dondorp, W. J., Sikkema-Raddatz, B., de Die-Smulders, C., & de Wert, G. (2012). Arrays in postnatal and prenatal diagnosis: An exploration of the ethics of consent. Human Mutation, 33(6), 916–922.CrossRefGoogle Scholar
  16. Downing, N. R., Williams, J. K., Daack-Hirsch, S., Driessnack, M., & Simon, C. M. (2013). Genetics specialists’ perspectives on disclosure of genomic incidental findings in the clinical setting. Patient Education and Counseling, 90(1), 133–138.CrossRefGoogle Scholar
  17. Ellison, J. W., Ravnan, J. B., Rosenfeld, J. A., Morton, S. A., Neill, N. J., Williams, M. S., et al. (2012). Clinical utility of chromosomal microarray analysis. Pediatrics, 130(5), e1085–e1095.CrossRefGoogle Scholar
  18. Fanos, J. H. (2012). New “first families”: The psychosocial impact of new genetic technologies. Genetics in Medicine, 14(2), 189–190.CrossRefGoogle Scholar
  19. Feero, W. G., & Green, E. D. (2011). Genomics education for health care professionals in the 21st century. JAMA: The Journal of the American Medical Association, 306(9), 989–990.CrossRefGoogle Scholar
  20. Friedman, J. (2009). High–resolution array genomic hybridization in prenatal diagnosis. Prenatal Diagnosis, 29(1), 20–28.CrossRefGoogle Scholar
  21. Geller, G., Tambor, E. S., Chase, G. A., & Holtzman, N. A. (1993). Measuring physicians’ tolerance for ambiguity and its relationship to their reported practices regarding genetic testing. Medical Care, 31(11), 989–1001.CrossRefGoogle Scholar
  22. Gerrity, M. S., DeVellis, R. F., & Earp, J. A. (1990). Physicians’ reactions to uncertainty in patient care: a new measure and new insights. Medical Care, 28(8), 724–736.CrossRefGoogle Scholar
  23. Gerrity, M. S., White, K. P., DeVellis, R. F., & Dittus, R. S. (1995). Physicians’ reactions to uncertainty: Refining the constructs and scales. Motivation and Emotion, 19(3), 175–191.CrossRefGoogle Scholar
  24. Girirajan, S., Rosenfeld, J. A., Coe, B. P., Parikh, S., Friedman, N., Goldstein, A., et al. (2012). Phenotypic heterogeneity of genomic disorders and rare copy-number variants. New England Journal of Medicine, 367, 1321–1331.CrossRefGoogle Scholar
  25. Green, R. C., Berg, J. S., Berry, G. T., Biesecker, L. G., Dimmock, D. P., Evans, J. P., et al. (2012). Exploring concordance and discordance for return of incidental findings from clinical sequencing. Genetics in Medicine, 14(4), 405–410.PubMedPubMedCentralCrossRefGoogle Scholar
  26. Green, R. C., Berg, J. S., Grody, W. W., Kalia, S. S., Korf, B. R., Martin, C. L., et al. (2013). ACMG recommendations for reporting of incidental findings in clinical exome and genome sequencing. Genetics in Medicine, 15, 565–574.PubMedPubMedCentralCrossRefGoogle Scholar
  27. Greendale, K., & Pyeritz, R. E. (2001). Empowering primary care health professionals in medical genetics: How soon? How fast? How far? American Journal of Medical Genetics, 106(3), 223–232.CrossRefGoogle Scholar
  28. Grody, W. W. (2003). Ethical issues raised by genetic testing with oligonucleotide microarrays. Molecular Biotechnology, 23(2), 127–138.CrossRefGoogle Scholar
  29. Hennekam, R. C., & Biesecker, L. G. (2012). Next-generation sequencing demands next-generation phenotyping. Human Mutation, 33(5), 884–886.PubMedPubMedCentralCrossRefGoogle Scholar
  30. Jackson, L., & Pyeritz, R. E. (2011). Molecular technologies open new clinical genetic vistas. Science Translational Medicine, 3(65), 65ps2–65ps2.CrossRefGoogle Scholar
  31. Kearney, H. M., Thorland, E. C., Brown, K. K., Quintero-Rivera, F., & South, S. T. (2011). American college of medical genetics standards and guidelines for interpretation and reporting of postnatal constitutional copy number variants. Genetics in Medicine, 13(7), 680–685.CrossRefGoogle Scholar
  32. Kemper, A. R., Trotter, T. L., Lloyd-Puryear, M. A., Kyler, P., Feero, W. G., & Howell, R. R. (2010). A blueprint for maternal and child health primary care physician education in medical genetics and genomic medicine: recommendations of the United States secretary for health and human services advisory committee on heritable disorders in newborns and children. Genetics in Medicine, 12(2), 77–80.CrossRefGoogle Scholar
  33. Kohane, I. S., Masys, D. R., & Altman, R. B. (2006). The incidentalome: A threat to genomic medicine. Journal of the American Medical Association, 296(2), 212–215.CrossRefGoogle Scholar
  34. Lacassie, Y. (2009). Comments on the “genotype first diagnosis” controversy. Genetics in Medicine, 11(9), 682.CrossRefGoogle Scholar
  35. Ledbetter, D. H. (2008). Cytogenetic technology—genotype and phenotype. New England Journal of Medicine, 359(16), 1728–1730.CrossRefGoogle Scholar
  36. Ledbetter, D. H. (2009). Response to Saul and Moeschler “How best to use CGH arrays in the clinical setting”. Genetics in Medicine, 11(5), 371–372.CrossRefGoogle Scholar
  37. Lerman, C., Croyle, R. T., Tercyak, K. P., & Hamann, H. (2002). Genetic testing: Psychological aspects and implications. Journal of Consulting and Clinical Psychology, 70(3), 784–797.CrossRefGoogle Scholar
  38. Manning, M., & Hudgins, L. (2010). Array-based technology and recommendations for utilization in medical genetics practice for detection of chromosomal abnormalities. Genetics in Medicine, 12(11), 742–745.PubMedPubMedCentralCrossRefGoogle Scholar
  39. Mefford, H. C. (2009). Genotype to phenotype—discovery and characterization of novel genomic disorders in a “genotype-first” era. Genetics in Medicine, 11(12), 836–842.CrossRefGoogle Scholar
  40. Mefford, H. C., & Eichler, E. E. (2009). Duplication hotspots, rare genomic disorders, and common disease. Current Opinion in Genetics & Development, 19(3), 196–204.CrossRefGoogle Scholar
  41. Miller, D. T., Adam, M. P., Aradhya, S., Biesecker, L. G., Brothman, A. R., Carter, N. P., et al. (2010). Consensus statement: chromosomal microarray is a first-tier clinical diagnostic test for individuals with developmental disabilities or congenital anomalies. The American Journal of Human Genetics, 86(5), 749–764.CrossRefGoogle Scholar
  42. Navon, D. (2012). Genetic counseling, activism and ‘Genotype-First’ diagnosis of developmental disorders. Journal of Genetic Counseling, 21(6), 770–776.CrossRefGoogle Scholar
  43. Nelson, R., Botkin, J. R., Kodish, E., Levetown, M., Truman, J., Wilfond, B., et al. (2001). Ethical issues with genetic testing in pediatrics. Pediatrics, 107(6), 1451–1455.CrossRefGoogle Scholar
  44. Netzer, C., Klein, C., Kohlhase, J., & Kubisch, C. (2009). New challenges for informed consent through whole genome array testing. Journal of Medical Genetics, 46(7), 495–496.PubMedPubMedCentralCrossRefGoogle Scholar
  45. Portnoy, D. B., Han, P. K., Ferrer, R. A., Klein, W. M., & Clauser, S. B. (2011). Physicians’ attitudes about communicating and managing scientific uncertainty differ by perceived ambiguity aversion of their patients. Health Expectations Google Scholar
  46. Pyeritz, R. E. (2011). The coming explosion in genetic testing–is there a duty to recontact? The New England Journal of Medicine, 365(15), 1367–1369.PubMedPubMedCentralCrossRefGoogle Scholar
  47. Reiff, M., Bernhardt, B. A., Mulchandani, S., Soucier, D., Cornell, D., Pyeritz, R. E., & Spinner, N. B. (2012). “What does it mean?”: Uncertainties in understanding results of chromosomal microarray testing. Genetics in Medicine, 14(2), 250–258.PubMedPubMedCentralCrossRefGoogle Scholar
  48. Reiff, M., Ross, K., Mulchandani, S., Propert, K. J., Pyeritz, R. E., Spinner, N. B., & Bernhardt, B. A. (2013). Physicians’ perspectives on the uncertainties and implications of chromosomal microarray testing of children and families. Clinical Genetics, 83(1), 23–30.CrossRefGoogle Scholar
  49. Saul, R., & Moeschler, J. (2009). How best to use CGH arrays in the clinical setting. Genetics in Medicine, 11(5), 371.CrossRefGoogle Scholar
  50. Shaffer, L. G., & Bejjani, B. A. (2006). Medical applications of array CGH and the transformation of clinical cytogenetics. Cytogenetic and Genome Research, 115(3–4), 303–309.CrossRefGoogle Scholar
  51. Trinidad, S. B., Fryer-Edwards, K., Crest, A., Kyler, P., Lloyd-Puryear, M. A., & Burke, W. (2008). Educational needs in genetic medicine: primary care perspectives. Public Health Genomics, 11(3), 160–165.CrossRefGoogle Scholar
  52. Wade, C. H., Wilfond, B. S., & McBride, C. M. (2010). Effects of genetic risk information on children’s psychosocial wellbeing: A systematic review of the literature. Genetics in Medicine, 12(6), 317–326.CrossRefGoogle Scholar
  53. Wain, K. E., Riggs, E., Hanson, K., Savage, M., Riethmaier, D., Muirhead, A., et al. (2012). The laboratory-clinician team: A professional call to action to improve communication and collaboration for optimal patient care in chromosomal microarray testing. Journal of Genetic Counseling, 5, 631–637.CrossRefGoogle Scholar
  54. Wilfond, B., & Ross, L. F. (2009). From genetics to genomics: Ethics, policy, and parental decision-making. Journal of Pediatric Psychology, 34(6), 639–647.CrossRefGoogle Scholar

Copyright information

© National Society of Genetic Counselors, Inc. 2013

Authors and Affiliations

  • Marian Reiff
    • 1
    • 4
    Email author
  • Rebecca Mueller
    • 2
  • Surabhi Mulchandani
    • 3
  • Nancy B. Spinner
    • 3
  • Reed E. Pyeritz
    • 1
  • Barbara A. Bernhardt
    • 1
  1. 1.Center for the Integration of Genetic Health Care TechnologiesPerelman School of Medicine, University of PennsylvaniaPhiladelphiaUSA
  2. 2.Basser Research Center for BRCAUniversity of PennsylvaniaPhiladelphiaUSA
  3. 3.Department of Pathology and Laboratory MedicineThe Children’s Hospital of Philadelphia and The Perelman School of Medicine at The University of PennsylvaniaPhiladelphiaUSA
  4. 4.Division of Translational Medicine and Human GeneticsPerelman School of Medicine, University of PennsylvaniaPhiladelphiaUSA

Personalised recommendations