Journal of Genetic Counseling

, Volume 15, Issue 5, pp 339–347 | Cite as

Assessing the Predictive Accuracy of hMLH1 and hMSH2 Mutation Probability Models

  • Kory W. Jasperson
  • Katrina Lowstuter
  • Jeffrey N. Weitzel
Professional Issues

Hereditary nonpolyposis colorectal cancer (HNPCC) is characterized by a susceptibility to colorectal and extra-colonic cancers. Several guidelines exist for the identification of families suspected of having HNPCC, however these guidelines lack adequate sensitivity and specificity. In an attempt to improve accuracy for the detection of individuals with HNPCC, the Wijnen pre-test probability model (1998) and Myriad Genetics Laboratory prevalence table (2004) were developed. Here we evaluate the Wijnen model and Myriad table at predicting the presence of a mutation in individuals undergoing genetic testing for HNPCC. Forty-nine patients who had undergone genetic testing for germline mutations in hMLH1 and/or hMSH2 were part of our analysis. Our results revealed that the revised Bethesda guidelines performed with the highest sensitivity for germline mutations (94.4%), however the specificity was low (12.9%). Using a 10.0% mutation probability threshold, the Wijnen model and Myriad table had sensitivities of 55.6 and 60.0%, respectively and specificities of 54.8 and 23.8%, respectively. The Wijnen model and Myriad table were poor predictors of mutation prevalence, which is shown by the areas underneath their corresponding receiver operator characteristic curves (0.616 and 0.400, respectively). The results of this study demonsrate that neither the Wijnen model nor the Myriad table are sensitive or specific enough to be used as the only indication when to offer genetic testing for HNPCC.

KEY WORDS:

HNPCC hMLH1 and hMSH2 mismatch repair genes mutation probability models Lynch syndrome 

REFERENCES

  1. Aaltonen, L. A., Peltomaki, P., Mecklin, J. P., Jarvinen, H., Jass, J. R., Green, J. S., et al. (1994). Replication errors in benign and malignant tumors from hereditary nonpolyposis colorectal cancer patients. Cancer Res, 54, 1645–1648.PubMedGoogle Scholar
  2. Aaltonen, L. A., Salovaara, R., Kristo, P., Canzian, F., Hemminki, A., Peltomaki, P., et al. (1998). Incidence of hereditary nonpolyposis colorectal cancer and the feasibility of molecular screening for the disease. N Engl J Med, 338, 1481–1487.PubMedCrossRefGoogle Scholar
  3. Aarnio, M., Sankila, R., Pukkala, E., Salovaara, R., Aaltonen, L. A., de la Chapelle, A., et al. (1999). Cancer risk in mutation carriers of DNA-mismatch-repair genes. Int J Cancer, 81, 214–218.PubMedCrossRefGoogle Scholar
  4. CancerGene (v. 4.0). A cancer predisposition risk assessment program from Dr. David Euhus. University of Texas SouthWestern. Retrieved September 2004 from http://www3.utsouthwestern.edu/cancergeneGoogle Scholar
  5. De Jong, A. E., Morreau, H., Van Puijenbroek, M., Eilers, P. H., Wijnen, J., Nagengast, F. M., et al. (2004). The role of mismatch repair gene defects in the development of adenomas in patients with HNPCC. Gastroenterology, 126, 42–48.PubMedCrossRefGoogle Scholar
  6. Engel, C., Forberg, J., Holinski-Feder, E., Pagenstecher, C., Plaschke, J., Kloor, M., et al. (2006). Novel strategy for optimal sequential application of clinical criteria, immunohistochemistry and microsatellite analysis in the diagnosis of hereditary nonpolyposis colorectal cancer. Int J Cancer, 118, 115–122.PubMedCrossRefGoogle Scholar
  7. Giardiello, F. M., Brensinger, J. D., & Petersen, G. M. (2001). AGA technical review on hereditary colorectal cancer and genetic testing. Gastroenterology, 121, 198–213.PubMedCrossRefGoogle Scholar
  8. Grabowski, M., Mueller-Koch, Y., Grasbon-Frodl, E., Koehler, U., Keller, G., Vogelsang, H., et al. (2005). Deletions account for 17% of pathogenic germline alterations in MLH1 and MSH2 in hereditary nonpolyposis colorectal cancer (HNPCC) families. Genet Test, 9(2), 138–146.PubMedCrossRefGoogle Scholar
  9. Ionov, Y., Peinado, M. A., Malkhosyan, S., Shibata, D., & Perucho, M. (1993). Ubiquitous somatic mutations in simple repeated sequences reveal a new mechanism for colonic carcinogenesis. Nature, 363, 558–561.PubMedCrossRefGoogle Scholar
  10. Jarvinen, H. J., Aarnio, M., Mustonen, H., Aktan-Collan, K., Aaltonen, L. A., Peltomaki, P., et al. (2000). Controlled 15-year trial on screening for colorectal cancer in families with hereditary nonpolyposis colorectal cancer. Gastroenterology, 118, 829–834.PubMedCrossRefGoogle Scholar
  11. Kemp, Z., Thirlwell, C., Sieber, O., Silver, A., & Tomlinson, I. (2004). An update on the genetics of colorectal cancer. Hum Mol Genet, 13, R177–R185.PubMedCrossRefGoogle Scholar
  12. Kievit, W., de Bruin, J. H., Adang, E. M., Ligtenberg, M. J., Nagengast, F. M., van Krieken, J. H., et al. (2004). Current clinical selection strategies for identification of hereditary non-polyposis colorectal cancer families are inadequate: A meta-analysis. Clin Genet, 65, 308–316.PubMedCrossRefGoogle Scholar
  13. Lindor, N. M., Burgart, L. J., Leontovich, O., Goldberg, R. M., Cunningham, J. M., Sargent, D. J., et al. (2002). Immunohistochemistry versus microsatellite instability testing in phenotyping colorectal tumors. J Clin Oncol, 15, 20(4):1043–1048.CrossRefGoogle Scholar
  14. Lipton, L. R., Johnson, V., Cummings, C., Fisher, S., Risby, P., Eftekhar Sadat, A. T., et al. (2004). Refining the Amsterdam Criteria and Bethesda Guidelines: Testing algorithms for the prediction of mismatch repair mutation status in the familial cancer clinic. J Clin Oncol, 22(24), 4934–4943.PubMedCrossRefGoogle Scholar
  15. Lynch, H. T., Cristofaro, G., Rozen, P., Vasen, H., Lynch, P., Mecklin, J. P., et al. (2003). History of the International Collaborative Group on Hereditary Non Polyposis Colorectal Cancer. Fam Cancer, 2, 3–5.PubMedCrossRefGoogle Scholar
  16. Lynch, H. T., & de la Chapelle, A. (1999). Genetic susceptibility to non-polyposis colorectal cancer. J Med Genet, 36, 801–818.PubMedGoogle Scholar
  17. Moslein, G. (2003). Clinical implications of molecular diagnosis in hereditary nonpolyposis colorectal cancer. Recent Results Cancer Res, 162, 73–78.PubMedGoogle Scholar
  18. Myriad, G. L. (2004). Mutation prevalence table for MLH1/MSH2 genes. Retrieved on September 2004 from http://www.myriadtests.com/provider/mutprevmlh.htm.Google Scholar
  19. Palmer, C. G. S., & Hadley, D. W. (2005). Evaluating the impact of genetic counseling and testing with signal detection methods. J Genet Couns, 14(1), 17–27.PubMedCrossRefGoogle Scholar
  20. Peltomaki, P., & Vasen, H. (2004). Mutations associated with HNPCC predisposition – Update of ICG-HNPCC/INSiGHT mutation database. Dis Markers, 20, 269–276.PubMedGoogle Scholar
  21. Plaschke, J., Engel, C., Kruger, S., Holinski-Feder, E., Pagenstecher, C., Mangold, E., et al. (2004). Lower incidence of colorectal cancer and later age of disease onset in 27 families with pathogenic MSH6 germline mutations compared with families with MLH1 or MSH2 mutations: The German Hereditary Nonpolyposis Colorectal Cancer Consortium. J Clin Oncol, 22, 4486–4494.PubMedCrossRefGoogle Scholar
  22. Rodriguez-Bigas, M. A., Boland, C. R., Hamilton, S. R., Henson, D. E., Jass, J. R., Khan, P. M., et al. (1997). A National Cancer Institute Workshop on Hereditary Nonpolyposis Colorectal Cancer Syndrome: meeting highlights and Bethesda guidelines. J Natl Cancer Inst, 89, 1758–1762.PubMedCrossRefGoogle Scholar
  23. Stormorken, A. T., Bowitz-Lothe, I. M., Noren, T., Kure, E., Aase, S., Wijnen, J., et al. (2005). Immunohistochemistry identifies carriers of mismatch repair gene defects causing hereditary nonpolyposis colorectal cancer. J Clin Oncol, 23, 4705–4712.PubMedCrossRefGoogle Scholar
  24. Umar, A., Boland, C. R., Terdiman, J. P., Syngal, S., de la Chapelle, A., Ruschoff, J., et al. (2004). Revised Bethesda Guidelines for hereditary nonpolyposis colorectal cancer (Lynch syndrome) and microsatellite instability. J Natl Cancer Inst, 96, 261–268.PubMedCrossRefGoogle Scholar
  25. Vasen, H. F., Mecklin, J. P., Khan, P. M., & Lynch, H. T. (1991). The International Collaborative Group on Hereditary Non-Polyposis Colorectal Cancer (ICG-HNPCC). Dis Colon Rectum, 34, 424–425.PubMedCrossRefGoogle Scholar
  26. Vasen, H. F., Watson, P., Mecklin, J. P., & Lynch, H. T. (1999). New clinical criteria for hereditary nonpolyposis colorectal cancer (HNPCC, Lynch syndrome) proposed by the International Collaborative group on HNPCC. Gastroenterology, 116, 1453–1456.PubMedCrossRefGoogle Scholar
  27. Viel, A., Genuardi, M., Lucci-Cordisco, E., Capozzi, E., Rovella, V., Fornasarig, M., et al. (1998). Hereditary Nonpolyposis Colorectal Cancer: An Approach to the Selection of Candidates to Genetic Testing Based on Clinical and Molecular Characteristics. Community Genet, 1, 229–236.PubMedCrossRefGoogle Scholar
  28. Wijnen, J. T., Vasen, H. F., Khan, P. M., Zwinderman, A. H., van der Klift, H., Mulder, A., et al. (1998). Clinical findings with implications for genetic testing in families with clustering of colorectal cancer. N Engl J Med, 339, 511–518.PubMedCrossRefGoogle Scholar
  29. Wu, Y., Berends, M. J., Mensink, R. G., Kempinga, C., Sijmons, R. H., van Der Zee, A. G., et al. (1999). Association of hereditary nonpolyposis colorectal cancer-related tumors displaying low microsatellite instability with MSH6 germline mutations. Am J Hum Genet, 65(5), 1291–1298.PubMedCrossRefGoogle Scholar

Copyright information

© National Society of Genetic Counselors, Inc. 2006

Authors and Affiliations

  • Kory W. Jasperson
    • 1
  • Katrina Lowstuter
    • 1
  • Jeffrey N. Weitzel
    • 1
  1. 1.Department of Clinical Cancer GeneticsCity of Hope National Medical CenterDuarteUSA

Personalised recommendations