Skip to main content
Log in

Eggshell Derived Europium Doped Hydroxyapatite Nanoparticles for Cell Imaging Application

  • Original Article
  • Published:
Journal of Fluorescence Aims and scope Submit manuscript

Abstract

Hen’s eggshell, a biological waste product, was turned into a cell imaging probe: europium doped hydroxyapatite (HAp: Eu) nanoparticle using hydrothermal method. Luminescence of the synthesized nanoparticle was studied for various doping concentrations of the lanthanide ion europium (Eu3+). Eu doped HAp showed a hexagonal crystal structure and rod-shaped morphology. Well-defined emission peaks of europium, corresponding to the substitution of Eu3+ at the Ca2+(I) site of HAp, were confirmed from the samples’ photoluminescence (PL) spectra. Good biocompatibility up to 500 μg/mL of the samples indicates their potential applications in bioimaging. Synthesized nanoparticles were internalized and used for in vitro imaging of the PC12 cells without any surface modification. The materials’ use as a potential in vivo imaging agent is proposed from the haemolysis study.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Availability of Data and Material

The data provided in the manuscript is original and will be made available at any time on a request basis.

References

  1. Liu H, Chen F, Xi P et al (2011) Biocompatible fluorescent hydroxyapatite: Synthesis and live cell imaging applications. J Phys Chem C 115:18538–18544. https://doi.org/10.1021/jp206843w

    Article  CAS  Google Scholar 

  2. Xie Y, He W, Li F et al (2016) Luminescence enhanced Eu 3+ /Gd 3+ co-doped hydroxyapatite nanocrystals as imaging agents in vitro and in vivo. ACS Appl Mater Interfaces 8:10212–10219. https://doi.org/10.1021/acsami.6b01814

    Article  PubMed  CAS  Google Scholar 

  3. Demchenko AP (2013) Nanoparticles and nanocomposites for fluorescence sensing and imaging. Methods Appl Fluoresc 1:022001–022028. https://doi.org/10.1088/2050-6120/1/2/022001

    Article  PubMed  CAS  Google Scholar 

  4. Hoshyar N, Gray S, Han H, Bao G (2016) The effect of nanoparticle size on in vivo pharmacokinetics and cellular interaction. Nanomedicine 11:673–692. https://doi.org/10.2217/nnm.16.5

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  5. Foroozandeh P, Aziz AA (2018) Insight into cellular uptake and intracellular trafficking of nanoparticles. Nanoscale Res Lett 6:1–12. https://doi.org/10.1186/s11671-018-2728-6

  6. Karthik V, Pabi SK, Roy Chowdhury SK (2018) Development of hydroxyapatite / polyvinyl alcohol bionanocomposite for prosthesis implants. IOP Conf Ser Mater Sci Eng 314:012031. https://doi.org/10.1088/1757-899X/314/1/012031

    Article  Google Scholar 

  7. Rivera EM, Araiza M, Brostow W et al (1999) Synthesis of hydroxyapatite from eggshells. Mater Lett 41:128–134. https://doi.org/10.1016/S0167-577X(99)00118-4

    Article  CAS  Google Scholar 

  8. Kumar GS, Girija EK (2013) Flower-like hydroxyapatite nanostructure obtained from eggshell: A candidate for biomedical applications. Ceram Int 39:8293–8299. https://doi.org/10.1016/j.ceramint.2013.03.099

    Article  CAS  Google Scholar 

  9. Hasna K, Kumar SS, Komath M et al (2013) Synthesis of chemically pure, luminescent Eu3+ doped HAp nanoparticles: A promising fluorescent probe for in vivo imaging applications. Phys Chem Chem Phys 15:8106–8111. https://doi.org/10.1039/c3cp42648c

    Article  PubMed  CAS  Google Scholar 

  10. Prabakaran K, Balamurugan A, Rajeswari S (2005) Development of calcium phosphate based apatite from hen’s eggshell. Bull Mater Sci 28:115–119. https://doi.org/10.1007/BF02704229

    Article  CAS  Google Scholar 

  11. Lee SJ, Chun SY (2005) Fabrication of calcium based fine ceramic materials by recycling eggshell. Mater Sci Forum 486–487:293–296. https://doi.org/10.4028/www.scientific.net/msf.486-487.293

    Article  Google Scholar 

  12. Bal C, Ferenc W, Zsuzsanna K (2007) Preparation of calcium – phosphate bioceramics from natural resources. J Eur Ceram Soc 27:1601–1606. https://doi.org/10.1016/j.jeurceramsoc.2006.04.016

    Article  CAS  Google Scholar 

  13. Gergely G, Wéber F, Lukács I et al (2010) Preparation and characterization of hydroxyapatite from eggshell. Ceram Int 36:803–806. https://doi.org/10.1016/j.ceramint.2009.09.020

    Article  CAS  Google Scholar 

  14. Adeogun AI, Ofudje AE, Idowu MA, Kareem SO (2018) Facile development of nano size calcium hydroxyapatite based ceramic from eggshells: Synthesis and Characterization. Waste and Biomass Valorization 9:1469–1473. https://doi.org/10.1007/s12649-017-9891-3

    Article  CAS  Google Scholar 

  15. Silva FRO, De Lima NB, Bressiani AHA et al (2015) Synthesis, characterization and luminescence properties of Eu3+-doped hydroxyapatite nanocrystal and the thermal treatment effects. Opt Mater (Amst) 47:135–142. https://doi.org/10.1016/j.optmat.2015.07.006

    Article  CAS  Google Scholar 

  16. Han Y, Wang X, Li S (2010) Biocompatible europium doped hydroxyapatite nanoparticles as a biological fluorescent probe. Curr Nanosci 6:178–183. https://doi.org/10.2174/157341310790945632

    Article  CAS  Google Scholar 

  17. Ciobanu CS, Iconaru SL, Massuyeau F et al (2012) Synthesis, structure, and luminescent properties of europium-doped hydroxyapatite nanocrystalline powders. J Nanomater 2012:1–9. https://doi.org/10.1155/2012/942801

    Article  CAS  Google Scholar 

  18. Sun R, Chen K, Wu X et al (2013) Controlled synthesis and enhanced luminescence of europium-doped fluorine-substituted hydroxyapatite nanoparticles. CrystEngComm 15:3442–3447. https://doi.org/10.1039/c3ce26973f

    Article  CAS  Google Scholar 

  19. Hui J, Zhang X, Zhang Z et al (2012) Fluoridated HAp:Ln3+ (Ln = Eu or Tb) nanoparticles for cell-imaging. Nanoscale 4:6967–6970. https://doi.org/10.1039/c2nr32404k

    Article  PubMed  CAS  Google Scholar 

  20. Earl JS, Wood DJ, Milne SJ (2006) Hydrothermal synthesis of hydroxyapatite. J Phys Conf Ser 26:268–271. https://doi.org/10.1088/1742-6596/26/1/064

    Article  CAS  Google Scholar 

  21. Jayasree R, Madhumathi K, Rana D et al (2018) Development of egg shell derived carbonated apatite nanocarrier system for drug delivery. J Nanosci Nanotechnol 18:2318–2324. https://doi.org/10.1166/jnn.2018.14377

    Article  PubMed  CAS  Google Scholar 

  22. Azis Y, Adrian M, Alfarisi CD et al (2018) Synthesis of hydroxyapatite nanoparticles from egg shells by sol-gel method. IOP Conf Ser Mater Sci Eng 345:012040. https://doi.org/10.1088/1757-899X/345/1/012040

    Article  Google Scholar 

  23. Wati R, Yusuf Y (2019) Carbonated Hydroxyapatite Derived from Cerastoderma edule, Paphia undulata, and Meretrix meretrix Shells. IOP Conf Ser Mater Sci Eng 546:1–8. https://doi.org/10.1088/1757-899X/546/4/042049

    Article  Google Scholar 

  24. Piriou B, Fahmi D, Dexpert-Ghys J et al (1987) Unusual fluorescent properties of Eu3+ in oxyapatites. J Lumin 39:97–103. https://doi.org/10.1016/0022-2313(87)90036-6

    Article  CAS  Google Scholar 

  25. Karbowiak M, Hubert S (2000) Site-selective emission spectra of Eu3+ :Ca5 (PO)4 F. J Alloys Compd 302:87–93. https://doi.org/10.1016/S0925-8388(00)00612-5

    Article  CAS  Google Scholar 

  26. Zeng H, Li X, Xie F, Chen H (2014) Dextran-coated fluorapatite nanorods doped with lanthanides in labelling and directing osteogenic di ff erentiation of bone marrow mesenchymal stem. J Mater Chem B 2:3609–3617. https://doi.org/10.1039/c4tb00303a

    Article  PubMed  CAS  Google Scholar 

  27. Geng Z, Cheng Y, Ma L et al (2017) Nanosized strontium substituted hydroxyapatite prepared from egg shell for enhanced biological properties. J Biomater Appl 1–10 https://doi.org/10.1177/0885328217748124

  28. Iconaru SL, Motelica-Heino M, Predoi D (2013) Study on europium-doped hydroxyapatite nanoparticles by fourier transform infrared spectroscopy and their antimicrobial properties. J Spectrosc 2013:1–4. https://doi.org/10.1155/2013/284285

    Article  CAS  Google Scholar 

  29. Sadat-Shojai M, Khorasani MT, Dinpanah-Khoshdargi E, Jamshidi A (2013) Synthesis methods for nanosized hydroxyapatite with diverse structures. Acta Biomater 9:7591–7621. https://doi.org/10.1016/j.actbio.2013.04.012

    Article  PubMed  CAS  Google Scholar 

  30. Sun Y, Yang H, Tao D (2012) Preparation and characterization of Eu 3+ -doped fluorapatite nanoparticles by a hydrothermal method. Ceram Int 38:6937–6941. https://doi.org/10.1016/j.ceramint.2012.05.036

    Article  CAS  Google Scholar 

  31. Yang P, Quan Z, Li C et al (2008) Bioactive, luminescent and mesoporous europium-doped hydroxyapatite as a drug carrier. Biomaterials 29:4341–4347. https://doi.org/10.1016/j.biomaterials.2008.07.042

    Article  PubMed  CAS  Google Scholar 

  32. Ignjatović NL, Mančić L, Vuković M et al (2019) Rare-earth (Gd3+, Yb3+/Tm3+, Eu3+) co-doped hydroxyapatite as magnetic, up-conversion and down-conversion materials for multimodal imaging. Sci Rep 9:1–15. https://doi.org/10.1038/s41598-019-52885-0

    Article  CAS  Google Scholar 

  33. Luo X, Luo X, Wang H et al (2018) Synthesis, structure and temperature dependent luminescence of Eu3+ doped hydroxyapatite. IOP Conf Ser Mater Sci Eng 284:012004. https://doi.org/10.1088/1757-899X/284/1/012004

    Article  Google Scholar 

  34. Parchur AK, Ningthoujam RS (2012) Behaviour of electric and magnetic dipole transitions of Eu3+, 5D0 A 7F0 and Eu–O charge transfer band in Li+ co-doped YPO4:Eu3+. RSC Adv 2:10859–10868. https://doi.org/10.1039/c2ra22144f

    Article  CAS  Google Scholar 

  35. Wang R, Zhang F (2016) Lanthanide-based near infrared nanomaterials for bioimaging. In: RSC Nanosci Nanotechnol 1–39. https://doi.org/10.1039/9781782623199-00001

  36. Xuan T, Ngoc N, Pham V (2015) Comparative characterization of microstructure and luminescence of europium doped hydroxyapatite nanoparticles via coprecipitation and hydrothermal method. Opt - Int J Light Electron Opt 126:5019–5021. https://doi.org/10.1016/j.ijleo.2015.09.136

    Article  CAS  Google Scholar 

  37. Gaft M, Reisfeld R, Panczer G et al (1997) Eu3+ luminescence in high-symmetry sites of natural apatite. J Lumin 72–74:572–574. https://doi.org/10.1016/S0022-2313(96)00229-3

    Article  Google Scholar 

  38. Liu H, Wang L, Chen S, Zou B (2008) Optical properties of nanocrystal and bulk ZrO2: Eu3+. J Alloys Compd 448:336–339. https://doi.org/10.1016/j.jallcom.2006.11.171

    Article  CAS  Google Scholar 

  39. Yang P, Deng P, Yin Z (2002) Concentration quenching in Yb:YAG. J Lumin 97:51–54. https://doi.org/10.1016/S0022-2313(01)00426-4

    Article  CAS  Google Scholar 

  40. Reisfeld R (1973) Spectra and energy transfer of rare earths in inorganic glasses. In: Structure and bonding book series. Springer, pp 53–98. https://doi.org/10.1007/3-540-06125-8_2

  41. Gutzov S, Kohls M, Lerch M (2000) The luminescence of Zr – Eu – O – N materials. J Phys Chem Solids 61:1301–1309. https://doi.org/10.1016/S0022-3697(99)00406-0

    Article  CAS  Google Scholar 

  42. Yu S, Ping Y, Yi L et al (2008) Isolation and characterization of cancer stem cells from a human glioblastoma cell line U87. Cancer Lett 265:124–134. https://doi.org/10.1016/j.canlet.2008.02.010

    Article  PubMed  CAS  Google Scholar 

  43. Weber S, Fernandez-Cachon ML, Nascimento JM et al (2013) Label-free detection of neuronal differentiation in cell populations using high-throughput live-cell imaging of PC12 Cells. PLoS One 8:1–10. https://doi.org/10.1371/journal.pone.0056690

    Article  CAS  Google Scholar 

  44. Salto R, Vílchez JD, Girón MD et al (2015) β -Hydroxy- β -Methylbutyrate ( HMB ) Promotes neurite outgrowth in neuro2a cells. PLoS One 10:1–13. https://doi.org/10.1371/journal.pone.0135614

    Article  CAS  Google Scholar 

  45. Reichman J (2012) Handbook of optical filters for fluorescence microscopy. Chroma technology corp

  46. Wu Y, Shi M, Zhao L et al (2014) Visible-light-excited and europium-emissive nanoparticles for highly-luminescent bioimaging in vivo. Biomaterials 35:5830–5839. https://doi.org/10.1016/j.biomaterials.2014.03.080

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

This work was funded by Kerala State Council for Science, Technology and Environment (KSCSTE) under the KSCSTE Research fellowship scheme. The author T. K. Krishnapriya acknowledges STIC-CUSAT for TEM measurement, DST FIST for the FeSEM facility at the Department of Physics, CUSAT and Rosamma Varghese (MES College, Nedumkandam) for the help during sample preparation.

Funding

This work was funded by Kerala State Council for Science, Technology and Environment (KSCSTE) under the KSCSTE Research fellowship scheme.

Author information

Authors and Affiliations

Authors

Contributions

T. K. Krishnapriya: Conceptualization, Methodology, Investigation, Writing-Original draft preparation Ayswaria Deepti: Methodology, Investigation, Validation P. S. Baby Chakrapani: Supervision, Writing- Reviewing and editing A. S. Asha: Supervision, Writing- Reviewing and editing M. K. Jayaraj: Conceptualization, Supervision, Resources, Writing- Reviewing and Editing.

Corresponding author

Correspondence to A. S. Asha.

Ethics declarations

Ethical Approval

This is to certify that the article entitled “Eggshell derived europium doped hydroxyapatite nanoparticles for cell imaging application” submitted by T K Krishnapriya et al., for the publication in Journal of Fluorescence is based on the original work and results of the experiments were carried out by all authors under my supervision. No part of the article has been previously submitted for the publication in any other journals.

Consent for Publication

The authors give consent for the publication.

Conflicts of Interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 131 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Krishnapriya, T.K., Deepti, A., Chakrapani, P.S.B. et al. Eggshell Derived Europium Doped Hydroxyapatite Nanoparticles for Cell Imaging Application. J Fluoresc 31, 1927–1936 (2021). https://doi.org/10.1007/s10895-021-02814-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10895-021-02814-0

Keywords

Navigation