Photoinduced Reversible Modulation of Fluorescence of CdSe/ZnS Quantum Dots in Solutions with Diarylethenes

  • P. V. Karpach
  • A. A. Scherbovich
  • G. T. Vasilyuk
  • V. I. StsiapuraEmail author
  • A. O. Ayt
  • V. A. Barachevsky
  • А. R. Tuktarov
  • A. A. Khuzin
  • S. A. Maskevich


Steady-state absorption and fluorescence spectra, fluorescence decay kinetics of CdSe/ZnS quantum dots (QD) with photochromic diarylethenes (DAE) in toluene have been studied. Two kinds of QDs emitting at 525 and 600 nm were investigated and DAE were selected to ensure good overlap of their photoinduced absorption band with QDs emission spectra. It has been found that photochromic molecules form complexes with QD which results in partial fluorescence quenching. A reversible modulation of QDs emission intensity which correlates with magnitude of transient photoinduced absorption band of the diarylethenes during photochromic transformations has been demonstrated.


Quantum dots Diarylethenes Photochromism Nanophotoswitches 



This work was supported by Belarusian Republican Foundation for Fundamental Research (Project No. F18R-074) and Russian Foundation for Basic Research (Project No. 18-33-00010 Bel_a). The authors are grateful to Prof. M. Artemyev (Dr. of Sciences (Chemistry), Head of Laboratory of Nanochemistry, Institute of Physical and Chemical problems of BSU) for the sample of quantum dots and valuable discussions.

Supplementary material

10895_2019_2455_MOESM1_ESM.pdf (109 kb)
ESM 1 (PDF 108 kb)


  1. 1.
    Feringa BL (ed) (2001) Molecular switches. Wiley Weinheim.Google Scholar
  2. 2.
    Zhang J, Zou Q, Tian H (2013) Photochromic materials: more than meets the eye. Adv Mater 25(3):378–399PubMedCrossRefGoogle Scholar
  3. 3.
    Klajn R, Stoddart JF, Grzybowski BA (2010) Nanoparticles functionalised with reversible molecular and supramolecular switches. Chem Soc Rev 39(6):2203–2237PubMedCrossRefGoogle Scholar
  4. 4.
    Hasegawa Y, Nakagawa T, Kawai T (2010) Recent progress of luminescent metal complexes with photochromic units. Coord Chem Rev 254(21–22):2643–2651CrossRefGoogle Scholar
  5. 5.
    Cusido J, Deniz E, Raymo FM (2009) Fluorescent switches based on photochromic compounds. Eur J Org Chem 2009(13):2031–2045CrossRefGoogle Scholar
  6. 6.
    Raymo FM, Tomasulo M (2005) Fluorescence modulation with photochromic switches. J Phys Chem A 109(33):7343–7352PubMedCrossRefGoogle Scholar
  7. 7.
    Díaz SA, Menendez GO, Etchehon MH, Giordano L, Jovin TM, Jares-Erijman EA (2011) Photoswitchable water-soluble quantum dots: pcFRET based on amphiphilic photochromic polymer coating. ACS nano 5(4):2795–2805PubMedCrossRefGoogle Scholar
  8. 8.
    Yildiz I, Deniz E, Raymo FM (2009) Fluorescence modulation with photochromic switches in nanostructured constructs. Chem Soc Rev 38(7):1859–1867PubMedCrossRefGoogle Scholar
  9. 9.
    Yildiz I, Tomasulo M, Raymo FM (2008) Electron and energy transfer mechanisms to switch the luminescence of semiconductor quantum dots. J Mater Chem 18(46):5577–5584CrossRefGoogle Scholar
  10. 10.
    Tomasulo M, Yildiz I, Raymo FM (2007) Nanoparticle-induced transition from positive to negative photochromism. Inorg Chim Acta 360(3):938–944CrossRefGoogle Scholar
  11. 11.
    Binder WH, Sachsenhofer R, Straif CJ, Zirbs R (2007) Surface-modified nanoparticles via thermal and Cu (I)-mediated “click” chemistry: generation of luminescent CdSe nanoparticles with polar ligands guiding supramolecular recognition. J Mater Chem 17(20):2125–2132CrossRefGoogle Scholar
  12. 12.
    Tomasulo M, Yildiz I, Kaanumalle SL, Raymo FM (2006) pH-sensitive ligand for luminescent quantum dots. Langmuir 22(24):10284–10,290PubMedCrossRefPubMedCentralGoogle Scholar
  13. 13.
    Tomasulo M, Yildiz I, Raymo FM (2006) pH-sensitive quantum dots. J Phys Chem B 110(9):3853–3855PubMedCrossRefPubMedCentralGoogle Scholar
  14. 14.
    Tomasulo M, Yildiz I, Raymo FM (2006) Luminescence modulation with semiconductor quantum dots and photochromic ligands. Aust J Chem 59(3):175–178CrossRefGoogle Scholar
  15. 15.
    Jares-Erijman E, Giordano L, Spagnuolo C, Lidke K, Jovin TM (2005) Imaging quantum dots switched on and off by photochromic fluorescence resonance energy transfer (pcFRET). Mol Cryst Liq Cryst 430(1):257–265CrossRefGoogle Scholar
  16. 16.
    Zhu L, Zhu M-Q, Hurst JK, Li AD (2005) Light-controlled molecular switches modulate nanocrystal fluorescence. JACS 127(25):8968–8970CrossRefGoogle Scholar
  17. 17.
    Medintz IL, Trammell SA, Mattoussi H, Mauro JM (2004) Reversible modulation of quantum dot photoluminescence using a protein-bound photochromic fluorescence resonance energy transfer acceptor. JACS 126(1):30–31CrossRefGoogle Scholar
  18. 18.
    Giordano L, Jovin TM, Irie M, Jares-Erijman EA (2002) Diheteroarylethenes as thermally stable photoswitchable acceptors in photochromic fluorescence resonance energy transfer (pcFRET). JACS 124(25):7481–7489CrossRefGoogle Scholar
  19. 19.
    Alivisatos P (2004) The use of nanocrystals in biological detection. Nat Biotechnol 22(1):47–52PubMedCrossRefGoogle Scholar
  20. 20.
    Medintz IL, Uyeda HT, Goldman ER, Mattoussi H (2005) Quantum dot bioconjugates for imaging, labelling and sensing. Nat. Mater. 4(6):435PubMedCrossRefGoogle Scholar
  21. 21.
    Kairdolf BA, Smith AM, Stokes TH, Wang MD, Young AN, Nie S (2013) Semiconductor quantum dots for bioimaging and biodiagnostic applications. Annu. Rev. Anal. Chem. 6(1):143CrossRefGoogle Scholar
  22. 22.
    Alivisatos AP, Gu W, Larabell C (2005) Quantum dots as cellular probes. Annu Rev Biomed Eng 7:55–76PubMedCrossRefGoogle Scholar
  23. 23.
    O’regan B, Grätzel M (1991) A low-cost, high-efficiency solar cell based on dye-sensitized colloidal TiO2 films. Nature 353(6346):737CrossRefGoogle Scholar
  24. 24.
    McDonald SA, Konstantatos G, Zhang S, Cyr PW, Klem EJ, Levina L, Sargent EH (2005) Solution-processed PbS quantum dot infrared photodetectors and photovoltaics. Nat. Mater. 4(2):138PubMedCrossRefGoogle Scholar
  25. 25.
    Tang J, Kemp KW, Hoogland S, Jeong KS, Liu H, Levina L, Furukawa M, Wang X, Debnath R, Cha D (2011) Colloidal-quantum-dot photovoltaics using atomic-ligand passivation. Nat. Mater. 10(10):765PubMedCrossRefGoogle Scholar
  26. 26.
    Nozik AJ, Beard MC, Luther JM, Law M, Ellingson RJ, Johnson JC (2010) Semiconductor quantum dots and quantum dot arrays and applications of multiple exciton generation to third-generation photovoltaic solar cells. Chem Rev 110(11):6873–6890PubMedCrossRefGoogle Scholar
  27. 27.
    Dayneko S, Lypenko D, Linkov P, Sannikova N, Samokhvalov P, Nikitenko V, Chistyakov A (2016) Application of CdSe/ZnS/CdS/ZnS core–multishell quantum dots to modern OLED technology. Mater. Today: Proc. 3(2):211–215Google Scholar
  28. 28.
    Vitukhnovskii A, Vaschenko A, Bychkovskii D, Dirin D, Tananaev P, Vakshtein M, Korzhonov D (2013) Photo-and electroluminescence from semiconductor colloidal quantum dots in organic matrices: QD-OLED. Semiconductors 47(12):1567–1569CrossRefGoogle Scholar
  29. 29.
    Huynh WU, Dittmer JJ, Alivisatos AP (2002) Hybrid nanorod-polymer solar cells. Science 295(5564):2425–2427PubMedCrossRefGoogle Scholar
  30. 30.
    Kamat PV (2008) Quantum dot solar cells. Semiconductor nanocrystals as light harvesters. J Phys Chem C 112(48):18737–18,753CrossRefGoogle Scholar
  31. 31.
    Barachevsky V, Kobeleva O, Ayt A, Gorelik A, Valova T, Krayushkin M, Yarovenko V, Levchenko K, Kiyko V, Vasilyuk G (2013) Optical polymer materials with photocontrolled fluorescence. Opt Mater 35(10):1805–1809CrossRefGoogle Scholar
  32. 32.
    Barachevsky V (2015) Nanophotochromism. OPP 3(1):8–41. ISSN:2299-3177CrossRefGoogle Scholar
  33. 33.
    Barachevsky V (2018) Photochromic Nanoparticles and Their Properties. Crystallography Reports 63(2):271–275CrossRefGoogle Scholar
  34. 34.
    Barachevsky V (2018) Advances in photonics of organic photochromism. J Photochem Photobiol A: Chem 354:61–69CrossRefGoogle Scholar
  35. 35.
    Barachevsky V, Kobeleva O, Venidiktova O, Ayt A, Vasilyuk G, Maskevich S, Krayushkin M (2019) Photoinduced modulation of emission of quantum dots CdSe/ZnS by photochromic transformation of diarylethenes. Crystallogr. Rep. 64(5):823–827CrossRefGoogle Scholar
  36. 36.
    Barachevsky V, Krayushkin M, Kiyko V (2017) Light-Sensitive Organic Recording Media for Three-Dimensional Optical Memory. Photon-Working Switches. Springer, In, pp 181–207Google Scholar
  37. 37.
    Tuktarov AR, Khuzin AA, Akhmetov AR, Barachevsky VA, Venidiktova OV, Dzhemilev UM (2015) Synthesis and photochromic properties of fullerene C60 adducts with dithienylethenes. Tetrahedron Lett 56(52):7154–7157CrossRefGoogle Scholar
  38. 38.
    Wahl M (2014) Modern TCSPC electronics: principles and acquisition modes. In: Advanced Photon Counting. Springer, pp. 1–21.Google Scholar
  39. 39.
    O’Connor DV, Phillips D (1984) Time-correlated Single Photon Counting. Academic Press, New YorkGoogle Scholar
  40. 40.
    Maskevich А, Stepuro V, Kurguzenkov S, Lavysh A (2013) Hardware and software complex for fluorescence decay studies. Vesnik of Yanka Kupala State University of Grodno (in Russian) 159(3):107-119 ISSN:2076-4847Google Scholar
  41. 41.
    Stsiapura VI, Maskevich AA, Kuzmitsky VA, Uversky VN, Kuznetsova IM, Turoverov KK (2008) Thioflavin T as a molecular rotor: fluorescent properties of thioflavin T in solvents with different viscosity. J Phys Chem B 112(49):15893–15902. CrossRefPubMedGoogle Scholar
  42. 42.
    Bevington PR, Robinson DK (1969) Data reduction and error analysis for the physical sciences, vol 336 McGraw-Hill New YorkGoogle Scholar
  43. 43.
    Yuan Y-X (2011) Recent advances in numerical methods for nonlinear equations and nonlinear least squares. NACO 1(1):15–34 ISSN:2155-3289CrossRefGoogle Scholar
  44. 44.
    Stepuro V (2001) Studies of fluorescence decay for multicomponent systems using global analysis. Vesnik of Yanka Kupala State University of Grodno (in Russian) 5 (1):52-61 ISSN:2076-4847Google Scholar
  45. 45.
    Johnson ML, Frasier SG (1985) Nonlinear least-squares analysis. In: Methods in Enzymology, vol 117. Elsevier, pp. 301–342.Google Scholar
  46. 46.
    Lakowicz JR (2013) Principles of fluorescence spectroscopy. Springer Science & Business Media,Google Scholar
  47. 47.
    Williams ATR, Winfield SA, Miller JN (1983) Relative fluorescence quantum yields using a computer-controlled luminescence spectrometer. Analyst 108(1290):1067–1071CrossRefGoogle Scholar
  48. 48.
    Giansante C, Infante I (2017) Surface traps in colloidal quantum dots: a combined experimental and theoretical perspective. J Phys Chem Lett 8(20):5209–5215PubMedPubMedCentralCrossRefGoogle Scholar
  49. 49.
    Zenkevich E, Stupak A, Göhler C, Krasselt C, von Borczyskowski C (2015) Tuning electronic states of a CdSe/ZnS quantum dot by only one functional dye molecule. ACS nano 9(3):2886–2903PubMedCrossRefGoogle Scholar
  50. 50.
    Zenkevich EI, Blaudeck T, Milekhin A, Von Borczyskowski C (2012) Size-Dependent non-FRET photoluminescence quenching in nanocomposites based on semiconductor quantum dots CdSe/ZnS and functionalized porphyrin ligands. Int. J. Spectrosc. 2012:971791. CrossRefGoogle Scholar
  51. 51.
    Schlegel G, Bohnenberger J, Potapova I, Mews A (2002) Fluorescence decay time of single semiconductor nanocrystals. Phys Rev. Lett 88 (13):137401.Google Scholar
  52. 52.
    Wang H, de Mello DC, Meijerink A, Glasbeek M (2006) Ultrafast exciton dynamics in CdSe quantum dots studied from bleaching recovery and fluorescence transients. J Phys Chem B 110(2):733–737PubMedCrossRefGoogle Scholar
  53. 53.
    Knowles KE, McArthur EA, Weiss EA (2011) A multi-timescale map of radiative and nonradiative decay pathways for excitons in CdSe quantum dots. Acs Nano 5(3):2026–2035PubMedCrossRefGoogle Scholar
  54. 54.
    Kobeleva O, Valova T, Barachevskii V, Krayushkin M, Lichitskii B, Dudinov A, Kuznetsova OY, Adamov G, Grebennikov E (2010) Spectral-kinetic evidence of interaction of photochromic diarylethenes with silver nanoparticles. Opt Spectrosc 109(1):101–105CrossRefGoogle Scholar
  55. 55.
    Cantor CR, Schimmel PR (1980) Biophysical chemistry: Part III: the behavior of biological macromolecules. Macmillan,Google Scholar
  56. 56.
    Yu WW, Qu L, Guo W, Peng X (2003) Experimental determination of the extinction coefficient of CdTe, CdSe, and CdS nanocrystals. Chem Mater 15(14):2854–2860CrossRefGoogle Scholar
  57. 57.
    Knutson JR, Beechem JM, Brand L (1983) Simultaneous analysis of multiple fluorescence decay curves: a global approach. Chem Phys Lett 102(6):501–507CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Yanka Kupala State University of GrodnoGrodnoBelarus
  2. 2.Belarusian State University, ISEI BSUMinskBelarus
  3. 3.Photochemistry Center, FSRC “Crystallography and Photonics”, RASMoscowRussia
  4. 4.Institute of Petrochemistry and Catalysis, RASUfaRussia

Personalised recommendations