Advertisement

A Novel Switch on Optical Probe for Selective Sensing of Zn (II) Ion in Acetonitrile Medium: Spectroscopic and Computational Studies

  • Mahantesh Budri
  • Geeta Chimmalagi
  • Ganesh Naik
  • Shivaraj Patil
  • Kalagouda GudasiEmail author
  • Sanjeev Inamdar
FLUORESCENCE NEWS ARTICLE
  • 17 Downloads

Introduction

An emerging research area in present days for the monitoring of trace metal ions is to design and synthesis of an efficient, economical and targeted metal ion/ions responsive sensors [1, 2, 3, 4, 5]. Chemosensors are the conjugated organic molecules, which upon interacting with analyte produce detectable optical responses [6]. Out of several available optical sensors, fluorescent chemosensors are getting considerable attention due to their intrinsic sensitivity, upfront application in real-time monitoring with their quick responses [7, 8]. In recent years, ‘Turn On’ fluorescence sensors are attracting much attention for monitoring the trace level metal ions in the environmental as well as biological processes [9, 10].

The development of optical chemosensors is mainly focusing on d block elements because of their essentiality in biological and environmental processes [11]. Any analytical technique or detection technique which are able to detect or quantify the essential or...

Keywords

Optical probe Zn(II) ion ESIPT/ICT process Bioimaging Theoretical investigations 

Notes

Acknowledgements

The authors thank USIC, Karnatak University, Dharwad for electronic spectral analyses and Indian Institute of Science, Bangalore for recording NMR spectra. Two of the authors (M. B. B and G. H. C.) are grateful to UGC for awarding a RFSMS fellowship.

Supplementary material

10895_2019_2425_MOESM1_ESM.docx (2.4 mb)
ESM 1 (DOCX 2483 kb)
10895_2019_2425_MOESM2_ESM.docx (29 kb)
ESM 2 (DOCX 28 kb)

References

  1. 1.
    Vigato PA, Peruzzo V, Tamburini S (2012) Acyclic and cyclic compartmental ligands: Recent results and perspectives. Coord Chem Rev 256:953–1114CrossRefGoogle Scholar
  2. 2.
    Wang X, Liu Z, Qian F, He W (2012) A bezoimidazole-based highly selective and low-background fluorescent sensor for Zn2+. Inorg Chem Commun 15:176–179CrossRefGoogle Scholar
  3. 3.
    Basoglu A, Parlayan S, Ocak M, Alp H, Kantekin H, Ozdemir M, Ocak U (2009) Selective Recognition of Cobalt (II) Ion by a New Cryptand Compound with N2O2S2 Donor Atom Possessing 2-Hydroxy-1-Naphthylidene Schiff Base Moiety. J Fluoresc 19:655–662Google Scholar
  4. 4.
    Jeong Y, Yoon J (2012) Recent progress on fluorescent chemosensors for metal ions. Inorg Chim Acta 381:2–14CrossRefGoogle Scholar
  5. 5.
    Zhang JF, Zhou Y, Yoon J, Kim JS (2011) Recent progress in fluorescent and colorimetric chemosensors for detection of precious metal ions (silver, gold and platinum ions). Chem Soc Rev 40:3416CrossRefGoogle Scholar
  6. 6.
    Cheng J, Ma X, Zhang Y, Liu J, Zhou X, Xiang H (2014) Optical Chemosensors Based on Transmetalation of Salen-Based Schiff Base Complexes. Inorg Chem 53:3210–3219CrossRefGoogle Scholar
  7. 7.
    Yang Z, Yan C, Chen Y, Zhu C, Zhang C, Dong X, Yang W, Guo Z, Lu Y, He W (2011) A novel terpyridine/benzofurazan hybrid fluorophore: metal sensing behavior and application. Dalton Trans 40:2173–2176CrossRefGoogle Scholar
  8. 8.
    Vongnam K, Aree T, Sukwattanasinitt M, Rashatasakhon P (2018) ChemistrySelect 3:3495Google Scholar
  9. 9.
    Alam R, Mistri T, Bhowmick R, Katarkar A, Chaudhuri K, Ali M (2016) ESIPT blocked CHEF based differential dual sensor for Zn2+and Al3+in a pseudo-aqueous medium with intracellular bio-imaging applications and computational studies. RSC Adv 6:1268–1278CrossRefGoogle Scholar
  10. 10.
    Bothra S, Paira P, Ashok Kumar SK, Kumar R, Sahoo SK (2017) Vitamin B6 Cofactor-Conjugated Polyethyleneimine-Passivated Silver Nanoclusters for Fluorescent Sensing of  Zn2+ and  Cd2+ Using Chemically Modified Cellulose Strips. ChemistrySelect 2:6023–6029Google Scholar
  11. 11.
    Ali H, Khan E (2017) Bioaccumulation of non-essential hazardous heavy metals and metalloids in freshwater fish. Risk to human health. Environ Chem Lett 15:329–917.  https://doi.org/10.1007/s10311-018-0734-7 CrossRefGoogle Scholar
  12. 12.
    Lin L, Wang D, Chen SH, Wang DJ, Yin GD (2017) A highly sensitive fluorescent chemosensor for selective detection of zinc (II) ion based on the oxadiazole derivative. Spectrochim Acta A Mol Biomol Spectrosc 174:272–278CrossRefGoogle Scholar
  13. 13.
    Naik K, Revankar V (2018) Bis-(2-Hydroxybenzylidene)-1H-Pyrazole 3,5-Dicarbohydrazide as a Novel Chemosensor for the Detection of Endogenous Zinc: A Fluorometric Study. J Fluoresc 28:1105–1114.  https://doi.org/10.1007/s10895-018-2273-9
  14. 14.
    Kim YS, Lee JJ, Lee SY, Kim PG, Kim C (2016) A Turn-on Fluorescent Chemosensor for Zn2+ Based on Quinoline in Aqueous Media. J Fluoresc 26:835–844CrossRefGoogle Scholar
  15. 15.
    Patila M, Keshav K, Kumawat MK, Bothrad S, Sahood SK, Srivastava R, Rajputa J, Bendrea R, Kuwara A (2018) Monoterpenoid derivative based ratiometric fluorescent chemosensor for bioimaging and intracellular detection of Zn2+ and Mg2+ ions. J Photochem Photobiol A Chem 364:758–763CrossRefGoogle Scholar
  16. 16.
    Becker JS, Zoriy M, Pickhardt C, Przybylski M, Becker JS (2005) Investigation of Cu-, Zn- and Fe-containing human brain proteins using isotopic-enriched tracers by LA-ICP-MS and MALDI-FT-ICR-MS. Int J Mass Spectrom 242:135–144CrossRefGoogle Scholar
  17. 17.
    Chen J, Teo KC (2001) Determination of cadmium, copper, lead and zinc in water samples by flame atomic absorption spectrometry after cloud point extraction. Anal Chim Acta 450:215–222CrossRefGoogle Scholar
  18. 18.
    Binet MRB, Ma R, McLeod CW, Poole RK (2003) Detection and characterization of zinc- and cadmium-binding proteins in Escherichia coli by gel electrophoresis and laser ablation-inductively coupled plasma-mass spectrometry. Anal Biochem 318:30–38CrossRefGoogle Scholar
  19. 19.
    Li Z, Yang G, Wang B, Jiang C, Yin J (2002) Determination of transition metal ions in tobacco as their 2-(2-quinolinylazo)-5-dimethylaminophenol derivatives using reversed-phase liquid chromatography with UV–VIS detection. J Chromatogr A 971:243–248CrossRefGoogle Scholar
  20. 20.
    Li GY, Han KL (2018) Advanced review, vol 8, p 2Google Scholar
  21. 21.
    Chimmalagi GH, Kendur U, Patil SM, Gudasi KB, Frampton CS, Budri MB, Mangannavar Cr V, Muchchandi IS (2018) Appl Organomet Chem 32:4337CrossRefGoogle Scholar
  22. 22.
    Budri M, Kadolkar P, Gudasi K, Inamdar S (2019) A highly selective and sensitive turn on optical probe as a promising molecular platform for rapid detection of Zn (II) ion in acetonitrile medium: Experimental and theoretical investigations. J Mol Liq 283:346–358.  https://doi.org/10.1016/j.molliq.2019.03.097
  23. 23.
    G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, G. Scalmani, V. Barone, B. Mennucci, G. A. Petersson, H. Nakatsuji, M. Caricato, X. Li, H. P. Hratchian, A. F. Izmaylov, J. Bloino, G. Zheng, J. L. Sonnenberg, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, J. A. Montgomery, Jr., J. E. Peralta, F. Ogliaro, M. Bearpark, J. J. Heyd, E. Brothers, K. N. Kudin, V. N. Staroverov, T. Keith, R. Kobayashi, J. Normand, K. Raghavachari, A. Rendell, J. C. Burant, S. S. Iyengar, J. Tomasi, M. Cossi, N. Rega, J. M. Millam, M. Klene, J. E. Knox, J. B. Cross, V. Bakken, C. Adamo, J. Jaramillo, R. Gomperts, R. E. Stratmann, O. Yazyev, A. J. Austin, R. Cammi, C. Pomelli, J. W. Ochterski, R. L. Martin, K. Morokuma, V. G. Zakrzewski, G. A. Voth, P. Salvador, J. J. Dannenberg, S. Dapprich, A. D. Daniels, O. Farkas, J. B. Foresman, J. V. Ortiz, J. Cioslowski, and D. J. Fox, (2013) Gaussian, Inc., Gaussian 09, Revision, D.01, M. J. Frisch, Wallingford CTGoogle Scholar
  24. 24.
    Patil SM, Vadavi RS, Kendur U, Pujar GH, Chimmalagi G, Kulkarni SD, Nethaji M, Nembenna S, Inamdar SR, Gudasi KB (2017) Jrnl Photochemistry and Photobiology A: Chemistry 351:225CrossRefGoogle Scholar
  25. 25.
    Yu F, Guo X, Tian X, Jia L (2017) A Ratiomeric Fluorescent Sensor for Zn2+ Based on N,N′-Di(quinolin-8-yl)oxalamide. J Fluoresc 27:723–728Google Scholar
  26. 26.
    Budri M, Kadolkar P, Gudasi K, Inamdar S (2019) Jrnl Mol Liq.  https://doi.org/10.1016/j.molliq.2019.03.097
  27. 27.
    Roy N, Dutta A, Mondal P, Paul PC, Sanjoy Singh T (2017) Coumarin Based Fluorescent Probe for Colorimetric Detection of Fe3+ and Fluorescence Turn On-Off Response of Zn2+ and Cu2+. J Fluoresc 27:1307–1321Google Scholar
  28. 28.
    Bothra S, Babu LT, Paira P, Ashok Kumar SK, Kumar R, Sahoo SK (2018) A biomimetic approach to conjugate vitamin B6 cofactor with the lysozyme cocooned fluorescent AuNCs and its application in turn-on sensing of zinc(II) in environmental and biological samples. Anal Bioanal Chem 410(1):201–210CrossRefGoogle Scholar
  29. 29.
    Kumar V, Diwan U, Sanskriti I, Mishra RK, Upadhyay KK (2017) ChemistrySelect 2:11358Google Scholar
  30. 30.
    Qin J, Li T, Wang B, Yang Z, Fan L (2014) Fluorescent sensor for selective detection of Al3+ based on quinoline–coumarin conjugate. SPECTROCHIM ACTA A 133:38–43Google Scholar
  31. 31.
    Anand T, Kumar SKA, Sahoo SK (2017) ChemistrySelect 2(25):7570CrossRefGoogle Scholar
  32. 32.
    Wu J, Liu W, Ge J, Zhang H, Wang P (2011) Chem Soc Rev 40:33Google Scholar
  33. 33.
    Udhayakumari D, Saravanamoorthy S, Ashok M, Velmathi S (2011) Simple imine linked colorimetric and fluorescent receptor for sensing Zn2+ ions in aqueous medium based on inhibition of ESIPT mechanism. Tetrahedron Lett 52:4631–4635CrossRefGoogle Scholar
  34. 34.
    Boonkitpatarakul K, Smata A, Kongnukool K, Srisurichanb S, Chainokc K, Sukwattanasinitt M (2018) An 8-aminoquinoline derivative as a molecular platform for fluorescent sensors for Zn(II) and Cd(II) ions. J LUMIN 198:59–67Google Scholar
  35. 35.
    Choi JY, Kim D, Yoon J (2013) A highly selective “turn-on” fluorescent chemosensor based on hydroxy pyrene–hydrazone derivative for Zn2+. Dyes Pigments 96:176–179CrossRefGoogle Scholar
  36. 36.
    Lin AWH, Cheng P, Wan C, Wu A (2012) A turn-on and reversible fluorescence sensor for zinc ion. Analyst 137:4415CrossRefGoogle Scholar
  37. 37.
    Lohani CR, Kim J, Chung S, Yoon J, Lee K (2010) Colorimetric and fluorescent sensing of pyrophosphate in 100% aqueous solution by a system comprised of rhodamine B compound and Al3+ complex. Analyst 135:2079CrossRefGoogle Scholar
  38. 38.
    Park GJ, Lee JJ, You GR, Nguyen L, Noh I, Kim C (2016) A dual chemosensor for Zn 2+ and Co 2+ in aqueous media and living cells: Experimental and theoretical studies. Sensors Actuators B Chem 223:509–519CrossRefGoogle Scholar
  39. 39.
    Balamurugan G, Velmathi S (2017) Sensors Actuators B 23386:8Google Scholar
  40. 40.
    Christian GD, Purdy WC (1962) The residual current in orthophosphate medium. J Electroanal Chem 3:363–367Google Scholar
  41. 41.
    Goyal RN, Gupta VK, Chatterjee S (2009) Fullerene-C60-modified edge plane pyrolytic graphite electrode for the determination of dexamethasone in pharmaceutical formulations and human biological fluids. Biosens Bioelectron 24:1649–1654CrossRefGoogle Scholar
  42. 42.
    Goyal RN, Guptaa VK, Chatterjeea S (2010) Electrochemical investigations of corticosteroid isomers—testosterone and epitestosterone and their simultaneous determination in human urine. Anal Chim Acta 657:147–153CrossRefGoogle Scholar
  43. 43.
    Tabakci SEB (2017) Jrnl. Fluoresc 27:2145CrossRefGoogle Scholar
  44. 44.
    Shah T, Joshi K, Mishra S, Otiv S, Kumbar V (2016) Molecular and cellular effects of vitamin B12 forms on human trophoblast cells in presence of excessive folate. Biomed Pharmacother 84:526–534CrossRefGoogle Scholar
  45. 45.
    Tayade K, Bondhopadhyay B, Keshav K, Sahoo SK, Basu A, Singh J, Singh N, Nehete DT, Kuwar A (2016) A novel zinc(ii) and hydrogen sulphate selective fluorescent “turn-on” chemosensor based on isonicotiamide: INHIBIT type's logic gate and application in cancer cell imaging. Analyst 141(5):1814–1821CrossRefGoogle Scholar
  46. 46.
    Anitha C, Sheela CD, Tharmaraj P, Shanmugakala R (2012) Studies on Synthesis and Spectral Characterization of Some Transition Metal Complexes of Azo-Azomethine Derivative of Diaminomaleonitrile. Int J Inorg Chem 2013:1–10.  https://doi.org/10.1155/2013/436275
  47. 47.
    Said MH (2016) Int J Chemtech Res 9:111Google Scholar
  48. 48.
    Temel H, Ilhan S (2009) Synthesis and spectroscopic studies of novel transition metal complexes with schiff base synthesized from 1,4-bis-(o-aminophenoxy)butane and salicyldehyde. Russ. J Inorg Chem 54:543–547Google Scholar
  49. 49.
    Bhat SS, Revankar VK, Kumbar V, Bhat K, Vitthal A (2018) Kawade. Acta Cryst C74:146Google Scholar
  50. 50.
    Patil M, Bothra S, Sahoo SK, Rather HA, Vasita R, Bendre R, Kuwar A (2018) Highly selective nicotinohydrazide based ‘turn-on’ chemosensor for the detection of bioactive zinc(II): Its biocompitability and bioimaging application in cancer cells. Sensors Actuators B 270:200–206CrossRefGoogle Scholar
  51. 51.
    Upadhyayaa Y, Ananda T, Babub LT, Pairab P, Crisponic G, Ashok Kumar SK, Kumara R, Sahooa SK (2018) Three-in-one type fluorescent sensor based on a pyrene pyridoxal cascade for the selective detection of Zn(ii), hydrogen phosphate and cysteine. Dalton Trans 47(3):742–749CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  • Mahantesh Budri
    • 1
  • Geeta Chimmalagi
    • 1
  • Ganesh Naik
    • 1
  • Shivaraj Patil
    • 2
  • Kalagouda Gudasi
    • 1
    Email author
  • Sanjeev Inamdar
    • 2
  1. 1.Department of ChemistryKarnatak UniversityDharwadIndia
  2. 2.Department of PhysicsKarnatak UniversityDharwadIndia

Personalised recommendations