Novel Water-Soluble Cyclotriphosphazene-Bodipy Conjugates: Synthesis, Characterization and Photophysical Properties

  • Seda ÇetindereEmail author
  • Elif Okutan
  • Süreyya Oğuz Tümay
  • Serkan Yeşilot
  • Adem Kılıç


In the present work, novel water-soluble cyclotriphosphazene derivatives (3b and 4b) were synthesized by ‘click’ reactions between cyclotriphosphazene derivative with hydrophilic glycol side groups (2) and Bodipy’s (3a and 4a). All newly synthesized compounds (2, 3b and 4b) were characterized by fourier-transform infrared (FTIR), mass and NMR spectroscopy techniques and elemental analysis (EA). The photophysical properties of Bodipy substituted novel cyclotriphosphazenes (3a and 4a) were examined via UV-Vis absorption and fluorescence emission spectroscopy inside water and many organic solvents such as acetone, tetrahydrofuran, dichloromethane, dimethyl sulfoxide, etc., and the results were compared with the each other.

Graphical Abstract


Cyclotriphosphazene BODIPY Diethylene glycol methyl ether Photophysical 



The authors would like to thanks the Gebze Technical University (GTU) for the provided financial support (Grant no: BAP 2017-A105-38).

Supplementary material

10895_2019_2424_MOESM1_ESM.docx (2.4 mb)
ESM 1 (DOCX 2467 kb)


  1. 1.
    Mark JE, Allcock HR, West R (1992) Inorganic polymers. Prentice Hall, Englewood CliffsGoogle Scholar
  2. 2.
    Allcock HR (1972) Phosphorusenitrogen compounds. Academic Press, New York Chapters 6 and 7Google Scholar
  3. 3.
    Caminade AM, Hameau A, Majoral JP (2016) The specific functionalization of cyclotriphosphazene for the synthesis of smart dendrimers. Dalton Trans 45:1810–1822CrossRefGoogle Scholar
  4. 4.
    Rao MR, Gayatri G, Kumar A, Sastry GN, Ravikanth M (2009) Cyclotriphosphazene ring as a platform for multiporphyrin assemblies. Chem Eur J 15:3488–3496CrossRefGoogle Scholar
  5. 5.
    Yenilmez-Çifçi G, Senkuytu E, Durmus M, Yuksel F, Kılıç A (2013) Fluorenylidene bridged cyclotriphosphazenes: ‘turn-off’ fluorescence probe for Cu2+ and Fe3+ ions. Dalton Trans 42:14916–14926CrossRefGoogle Scholar
  6. 6.
    Coles SJ, Davies DB, Eaton RJ, Hursthouse MB, Kılıç A, Shaw RA, Uslu A (2006) The structural and stereogenic properties of pentaerythritoxy-bridged cyclotriphosphazene derivatives: spiro–spiro, spiro–ansa and ansa–ansa isomers. Dalton Trans 10:1302–1312Google Scholar
  7. 7.
    Cosut B (2014) Highly efficient energy transfer in BODIPY–pyrene decorated cyclotriphosphazene. Dyes Pigments 100:11–16CrossRefGoogle Scholar
  8. 8.
    Bolink HJ, Santamaria SG, Sudhakar S, Zhen C, Sellinger A (2008) Solution processable phosphorescent dendrimers based on cyclic phosphazenes for use in organic light emitting diodes (OLEDs). Chem Commun 5:618–620Google Scholar
  9. 9.
    Rao MR, Bolligarla R, Butcher RJ, Ravikanth M (2010) Hexa boron-Dipyrromethene Cyclotriphosphazenes: synthesis, crystal structure, and Photophysical properties. Inorg Chem 49:10606–10616CrossRefGoogle Scholar
  10. 10.
    Uslu A, Kılıç A, Güvenaltın Ş (2010) The investigation of structural and thermosensitive properties of new phosphazene derivative bearing glycol and aminoalcohol. Inorg Chim Acta 363:3721–3726CrossRefGoogle Scholar
  11. 11.
    Uslu A, Kılıç A, Güvenaltın Ş (2010) Structural and thermosensitive properties of novel octopus shape cyclotriphosphazenes. Polyhedron 29:2516–2521CrossRefGoogle Scholar
  12. 12.
    Luten J, van Steenis JH, van Someren R, Kemmink J, Schuurmans-Nieuwenbroek NME, Koning GA, Crommelin DJA, van Nostrum CF, Hennink WE (2003) Water-soluble biodegradable cationic polyphosphazenes for gene delivery. J Control Release 89:483–497CrossRefGoogle Scholar
  13. 13.
    Wilfert S, Iturmendi A, Schoefberger W, Kryeziu K, Heffeter P, Berger W, Brüggemann O, Teasdale I (2014) Water-soluble, biocompatible polyphosphazenes with controllable and pH-promoted degradation behaviour. J Polym Sci A Polym Chem 52:287–294CrossRefGoogle Scholar
  14. 14.
    Christova D, Ivanova SD, Velichkova RS, Tzvetkova P, Mihailova P, Lakov L, Peshev O (2001) New functionalized cyclotriphosphazenes - synthesis and application in the sol-gel process. Des Monomers Polym 4:329–341CrossRefGoogle Scholar
  15. 15.
    Selvaraj II, Chaklanobis S, Chandrasekhar V (1998) New lipophilic cyclo- and poly-phosphazenes containing surfactant substituents. Polym Int 46:111–116CrossRefGoogle Scholar
  16. 16.
    Yenilmez-Çiftçi G, Şenkuytu E, Bulut M, Durmuş M (2015) Novel Coumarin substituted water soluble Cyclophosphazenes as “turn-off” type fluorescence Chemosensors for detection of Fe3+ ions in aqueous media. J Fluoresc 25:1819–1830CrossRefGoogle Scholar
  17. 17.
    Tümay SO, Yıldırım-Sarıkaya S, Yeşilot S (2018) Novel iron(III) selective fluorescent probe based on synergistic effect of pyrene-triazole units on a cyclotriphosphazene scaffold and its utility in real samples. J Lumin 196:126–135CrossRefGoogle Scholar
  18. 18.
    Loudet A, Burgess K (2007) BODIPY dyes and their derivatives: syntheses and spectroscopic properties. Chem Rev 107:4891–4932CrossRefGoogle Scholar
  19. 19.
    Ziessel R, Ulrich G, Harriman A (2007) The chemistry of Bodipy: a new El Dorado for fluorescence tools. New J Chem 31:496–501CrossRefGoogle Scholar
  20. 20.
    Ulrich G, Ziessel R, Harriman A (2008) The chemistry of fluorescent Bodipy dyes: versatility unsurpassed. Angew Chem Int Ed 47:1184–1112CrossRefGoogle Scholar
  21. 21.
    Niu S, Massif C, Ulrich G, Renard PY, Romieu A, Ziessel R (2012) Water-soluble red-emitting Distyryl-Borondipyrromethene (BODIPY) dyes for biolabeling. Chem Eur J 18:7229–7242CrossRefGoogle Scholar
  22. 22.
    Zhu S, Zhang J, Janjanam J, Bi J, Vegesna G, Tiwari A, Luo FT, Wie J, Liu H (2013) Highly water-soluble, near-infrared emissive BODIPY polymeric dye bearing RGD peptide residues for cancer imaging. Anal Chim Acta 758:138–144CrossRefGoogle Scholar
  23. 23.
    Kim J, Kim Y (2014) A water-soluble sulfonate-BODIPY based fluorescent probe for selective detection of HOCl/OCl− in aqueous media. Analyst 139:2986–2989CrossRefGoogle Scholar
  24. 24.
    Chauhan P, Chu K, Yan N, Ding Z (2016) Comparison study of electrochemiluminescence of boron-dipyrromethene (BODIPY) dyes in aprotic and aqueous solutions. J Electroanal Chem 781:181–189CrossRefGoogle Scholar
  25. 25.
    Bura T, Ziessel R (2011) Water-soluble phosphonate-substituted BODIPY derivatives with tunable emission channels. Org Lett 13(12):3072–3075CrossRefGoogle Scholar
  26. 26.
    Xu J, Qian L, Yue Y, Guo Y, Shao S (2014) A water-soluble BODIPY derivative as a highly selective “turn-on” fluorescent sensor for H2O2 sensing in vivo. Biosens Bioelectron 56:58–63CrossRefGoogle Scholar
  27. 27.
    Hooper N, Beeching LJ, Dyke JM, Morris A, Ogden JS, Dias AA, Costa ML, Barros MT, Cabral MH, Moutinho AMC (2002) A study of the thermal decomposition of 2-Azidoethanol and 2-Azidoethyl acetate by ultraviolet photoelectron spectroscopy and matrix isolation infrared spectroscopy. J Phys Chem 106:9968–9975CrossRefGoogle Scholar
  28. 28.
    Liu JY, Yeung HS, Xu W, Li X, Ng DKP (2008) Highly efficient energy transfer in Subphthalocyanine−BODIPY conjugates. Org Lett 10:5421–5424CrossRefGoogle Scholar
  29. 29.
    Çetindere S, Çoşut B, Yeşilot S, Durmuş M, Kılıç A (2014) Synthesis and properties of axially BODIPY conjugated subphthalocyanine dyads. Dyes Pigments 101:234–239CrossRefGoogle Scholar
  30. 30.
    Allcock HR, Bender JD, Marford RV, Berda EB (2003) Synthesis and characterization of novel solid polymer electrolytes based on poly(7-oxanorbornenes) with pendent Oligoethyleneoxy-functionalized Cyclotriphosphazenes. Macromolecules 36:3563–3569CrossRefGoogle Scholar
  31. 31.
    Atilgan S, Ozdemir T, Akkaya EU (2010) Selective Hg(II) sensing with improved stokes shift by coupling the internal charge transfer process to excitation energy transfer. Org Lett 12:4792–4795CrossRefGoogle Scholar
  32. 32.
    Çetindere S, Tümay SO, Kılıç A, Durmuş M, Yeşilot S (2017) Synthesis and physico-chemical properties of cyclotriphosphazene-BODIPY conjugates. Dyes Pigments 139:517–523CrossRefGoogle Scholar
  33. 33.
    Keum D, Kim S, Kim Y (2014) A fluorescence turn-on sensor for the detection of palladium ions that operates through in situ generation of palladium nanoparticles. Chem Commun 50:1268–1270CrossRefGoogle Scholar
  34. 34.
    Kamkaew A, Burgess K (2015) Aza-BODIPY dyes with enhanced hydrophilicity. Chem Commun 51:10664–10667CrossRefGoogle Scholar
  35. 35.
    Erten-Ela S, Yilmaz MD, Icli B, Dede Y, Icli S, Akkaya EU (2008) A panchromatic Boradiazaindacene (BODIPY) sensitizer for dye-sensitized solar cells. Org Lett 10(15):3299–3302CrossRefGoogle Scholar
  36. 36.
    Tümay SO, Yıldırım-Sarıkaya S, Yeşilot S (2018) Novel Iron (III) selective fluorescent probe based on synergistic effect of pyrene-Triazole units on a Cyclotriphosphazene scaffold and its utility in real samples. J Lumin 196:126–135CrossRefGoogle Scholar
  37. 37.
    Uslu A, Tümay SO, Şenocak A, Yuksel F, Özcan E, Yeşilot S (2017) Imidazole/benzimidazole-modified cyclotriphosphazenes as highly selective fluorescent probes for Cu2+: synthesis, configurational isomers, and crystal structures. Dalton Trans 46:9140–9156CrossRefGoogle Scholar
  38. 38.
    Ozay H, Kagit R, Yildirim M, Yesilot S, Ozay O (2014) Novel hexapodal triazole linked to a cyclophosphazene core rhodamine-based chemosensor for selective determination of Hg2+ ions. J Fluoresc 24:1593–1601CrossRefGoogle Scholar
  39. 39.
    Lakowicz JR (2006) Principles of fluorescence spectroscopy, 3rd edn. Springer, BerlinCrossRefGoogle Scholar
  40. 40.
    Qin W, Baruah M, Sliwa M, van der Auweraer M, De Borggraeve WM, Beljonne D, van Averbeke B, Boens N (2008) Ratiometric, fluorescent BODIPY dye with Aza crown ether functionality: synthesis, Solvatochromism, and metal ion complex formation. J Phys Chem A 112:6104–6114CrossRefGoogle Scholar
  41. 41.
    Okutan E, Tümay SO, Yeşilot S (2016) Colorimetric fluorescent sensors for hemoglobin based on BODIPY dyes. J Fluoresc 26:2333–2343CrossRefGoogle Scholar
  42. 42.
    Jacques P, Braun AM (1981) Laser flash photolysis of Phthalocyanines in solution and microemulsion. Helvetica Chimicaacta 64(169):1800–1806CrossRefGoogle Scholar
  43. 43.
    Fery-Forgues S, Lavabre D (1999) Are fluorescence quantum yields so tricky to measure? A demonstration using familiar stationery products. J Chem Educ 76:1260–1264CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Department of ChemistryGebze Technical UniversityKocaeliTurkey
  2. 2.Institute of Inorganic Chemistry IUlm UniversityUlmGermany

Personalised recommendations