Advertisement

Identifying the Stoichiometry of Metal/Ligand Complex by Coupling Spectroscopy and Modelling: a Comprehensive Study on Two Fluorescent Molecules Specific to Lead

  • William René
  • Madjid Arab
  • Katri Laatikainen
  • Stéphane Mounier
  • Catherine BrangerEmail author
  • Véronique LenobleEmail author
ORIGINAL ARTICLE
  • 49 Downloads

Abstract

Two new chemosensors for lead (II) were synthesized based on 5-((anthracen-9-ylmethylene) amino)quinolin-10-ol (ANQ). ANQ was modified in the para position of the imine group via a methoxy link either with methylmethacrylate (ANQ-MMA) or styrene (ANQ-ST). Complexation of those molecules with Pb2+ was studied at room temperature using UV-Visible absorption and fluorescence spectroscopies. Thanks to the UV-visible absorption spectroscopy, it appeared that ANQ-MMA formed 1:1 and 1:2 complexes with lead (II) and ANQ-ST only 1:1 complex. For both molecules, the fluorescence excitation-emission matrices (EEM) signal intensity increased from 0 to 100 μmol.L−1 of lead (II) followed by a saturation for higher concentrations. The decomposition of the obtained EEMs gave a set of empiric fluorescent components that have been directly linked to the distribution of lead complexes obtained with the UV-visible absorption spectroscopy study. This correlation allowed to evidence metal/ligand complex stoichiometry and emerge as a new method to identify empiric components. Moreover, the two ligands showed a promising selectivity for Pb2+, turning them interesting probes for this hazardous metal.

Keywords

Metal/ligand complex Spectroscopy Modelling Fluorescent molecules Lead 

Notes

Acknowledgements

This work is part of the PREVENT program financed by the University of Toulon, Toulon-Provence-Méditerranée and the Conseil Départemental du Var, France. The authors acknowledge financial support from the Regional Council of Provence Alpes Côte d’Azur (France) and Academy of Finland.

Supplementary material

10895_2019_2405_MOESM1_ESM.pdf (1.2 mb)
ESM 1 (PDF 1216 kb)

References

  1. 1.
    Kim HN, Ren WX, Kim JS, Yoon J (Mar. 2012) Fluorescent and colorimetric sensors for detection of lead, cadmium, and mercury ions. Chem Soc Rev 41(8):3210–3244PubMedGoogle Scholar
  2. 2.
    Chen C-T, Huang W-P (Jun. 2002) A Highly Selective Fluorescent Chemosensor for Lead Ions. J Am Chem Soc 124(22):6246–6247PubMedGoogle Scholar
  3. 3.
    Flegal AR, Smith DR (Jun. 1992) Current needs for increased accuracy and precision in measurements of low levels of lead in blood. Environ Res 58(1):125–133PubMedGoogle Scholar
  4. 4.
    Wierzbicka M, Antosiewicz D (Jan. 1993) How lead can easily enter the food chain — a study of plant roots. Sci Total Environ 134:423–429Google Scholar
  5. 5.
    Wang L, Jin Y, Deng J, Chen G (Nov. 2011) Gold nanorods-based FRET assay for sensitive detection of Pb2+ using 8-17DNAzyme. Analyst 136(24):5169–5174PubMedGoogle Scholar
  6. 6.
    Wei Y, Liu R, Wang Y, Zhao Y, Cai Z, Gao X (Mar. 2013) Hairpin oligonucleotides anchored terbium ion: a fluorescent probe to specifically detect lead(II) at sub-nM levels. Analyst 138(8):2302–2307PubMedGoogle Scholar
  7. 7.
    The European Union (1998) Council Directive 98/83/EC of 3 November 1998 on the quality of water intended for human consumption. Off J Eur Communities, vol L 330:32–54, DecGoogle Scholar
  8. 8.
    Y. Chen and K. Wang, Azacrown[N,S,O]-modified porphyrin sensor for detection of Ag+, Pb2+, and Cu2+. Photochem Photobiol Sci, vol. 12, no. 11, pp. 2001–2007, Oct. 2013.Google Scholar
  9. 9.
    Zheng H, Zhan X-Q, Bian Q-N, Zhang X-J (2012) Advances in modifying fluorescein and rhodamine fluorophores as fluorescent chemosensors. Chem Commun 49(5):429–447, DecGoogle Scholar
  10. 10.
    A. Pal, B. Bag, M. Thirunavoukkarasu, S. Pattanaik, and B. K. Mishra, Solvent mediated tuning of selectivity in a rhodamine based probe and bioimaging for Pb(II) detection in plant tissues. RSC Adv, vol. 3, no. 40, pp. 18263–18266, Sep. 2013.Google Scholar
  11. 11.
    Sunnapu O, Kotla NG, Maddiboyina B, Singaravadivel S, Sivaraman G (2015) A rhodamine based ‘turn-on’ fluorescent probe for Pb(II) and live cell imaging. RSC Adv 6(1):656–660, DecGoogle Scholar
  12. 12.
    Xia W-S, Schmehl RH, Li C-J, Mague JT, Luo C-P, Guldi DM (Jan. 2002) Chemosensors for Lead(II) and Alkali Metal Ions Based on Self-Assembling Fluorescence Enhancement (SAFE). J Phys Chem B 106(4):833–843Google Scholar
  13. 13.
    Park J, Kim Y (Jun. 2012) A colorimetric probe for the selective naked-eye detection of Pb(II) ions in aqueous media. Analyst 137(14):3246–3248PubMedGoogle Scholar
  14. 14.
    Chen Y, Jiang J (Jun. 2012) Porphyrin-based multi-signal chemosensors for Pb2+ and Cu2+. Org Biomol Chem 10(24):4782–4787PubMedGoogle Scholar
  15. 15.
    Pandey R, Gupta RK, Shahid M, Maiti B, Misra A, Pandey DS (Jan. 2012) Synthesis and Characterization of Electroactive Ferrocene Derivatives: Ferrocenylimidazoquinazoline as a Multichannel Chemosensor Selectively for Hg2+ and Pb2+ Ions in an Aqueous Environment. Inorg Chem 51(1):298–311PubMedGoogle Scholar
  16. 16.
    Goswami S, Chakrabarty R (Jul. 2010) Highly Selective Colorimetric Fluorescent Sensor for Pb2+. Eur J Org Chem 2010(20):3791–3795Google Scholar
  17. 17.
    Valeur B, Berberan-Santos MN (2012) Molecular Fluorescence: Principles and Applications. John Wiley & SonsGoogle Scholar
  18. 18.
    Valeur B, Leray I Design principles of fluorescent molecular sensors for cation recognition. Coord Chem Rev 205(1):3–40 août 2000Google Scholar
  19. 19.
    Liu Z, He W, Guo Z (Jan. 2013) Metal coordination in photoluminescent sensing. Chem Soc Rev 42(4):1568–1600PubMedGoogle Scholar
  20. 20.
    de Silva AP et al (Aug. 1997) Signaling Recognition Events with Fluorescent Sensors and Switches. Chem Rev 97(5):1515–1566PubMedGoogle Scholar
  21. 21.
    Jun EJ, Swamy KMK, Bang H, Kim S-J, Yoon J (May 2006) Anthracene derivatives bearing thiourea group as fluoride selective fluorescent and colorimetric chemosensors. Tetrahedron Lett 47(18):3103–3106Google Scholar
  22. 22.
    Anand T, Sivaraman G, Mahesh A, Chellappa D (Jan. 2015) Aminoquinoline based highly sensitive fluorescent sensor for lead(II) and aluminum(III) and its application in live cell imaging. Anal Chim Acta 853:596–601PubMedGoogle Scholar
  23. 23.
    Chalal M, Vervandier-Fasseur D, Meunier P, Cattey H, Hierso J-C (May 2012) Syntheses of polyfunctionalized resveratrol derivatives using Wittig and Heck protocols. Tetrahedron 68(20):3899–3907Google Scholar
  24. 24.
    Laatikainen M et al (Jul. 2014) Complexation of Nickel with 2-(Aminomethyl)pyridine at High Zinc Concentrations or in a Nonaqueous Solvent Mixture. J Chem Eng Data 59(7):2207–2214Google Scholar
  25. 25.
    Gans P, Sabatini A, Vacca A (1985) SUPERQUAD: an improved general program for computation of formation constants from potentiometric data. J Chem Soc Dalton Trans 0(6):1195–1200Google Scholar
  26. 26.
    Zepp RG, Sheldon WM, Moran MA (Oct. 2004) Dissolved organic fluorophores in southeastern US coastal waters: correction method for eliminating Rayleigh and Raman scattering peaks in excitation–emission matrices. Mar Chem 89(1):15–36Google Scholar
  27. 27.
    Bro R (Oct. 1997) PARAFAC. Tutorial and applications. Chemom Intell Lab Syst 38(2):149–171Google Scholar
  28. 28.
    Stedmon CA, Markager S (Mar. 2005) Resolving the variability in dissolved organic matter fluorescence in a temperate estuary and its catchment using PARAFAC analysis. Limnol Oceanogr 50(2):686–697Google Scholar
  29. 29.
    Bro R, Kiers HAL (Jun. 2003) A new efficient method for determining the number of components in PARAFAC models. J Chemom 17(5):274–286Google Scholar
  30. 30.
    Mounier S, Zhao H, Garnier C, Redon R (Oct. 2011) Copper complexing properties of dissolved organic matter: PARAFAC treatment of fluorescence quenching. Biogeochemistry 106(1):107–116Google Scholar
  31. 31.
    Mahmoodi NO, Mirkhaef S, Ghavidast A (2015) Synthesis of anthracene derivatives of 1,3-diazabicyclo[3.1.0]hex-3-ene. J Mol Struct 1081:248–253, févrierGoogle Scholar
  32. 32.
    Yu M, He F, Tang Y, Wang S, Li Y, Zhu D (Jun. 2007) Non-Ionic Water-Soluble Crown-Ether-Substituted Polyfluorene as Fluorescent Probe for Lead Ion Assays. Macromol Rapid Commun 28(12):1333–1338Google Scholar
  33. 33.
    Varazo K, Xie F, Gulledge D, Wang Q (Sep. 2008) Synthesis of triazolyl anthracene as a selective fluorescent chemosensor for the Cu(II) ion. Tetrahedron Lett 49(36):5293–5296Google Scholar
  34. 34.
    Lin Y-I, Lang SA, Seifert CM, Child RG, Morton GO, Fabio PF Aldehyde Syntheses. Study of the preparation of 9,10-anthracenedicarboxaldehyde. J Organomet Chem 44(25):4701–4703 décembre 1979Google Scholar
  35. 35.
    Ryan DK, Weber JH (May 1982) Fluorescence quenching titration for determination of complexing capacities and stability constants of fulvic acid. Anal Chem 54(6):986–990Google Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  • William René
    • 1
    • 2
    • 3
  • Madjid Arab
    • 2
  • Katri Laatikainen
    • 4
  • Stéphane Mounier
    • 3
  • Catherine Branger
    • 1
    Email author
  • Véronique Lenoble
    • 3
    Email author
  1. 1.MAPIEM LaboratoryUniversity of ToulonToulonFrance
  2. 2.IM2NP LaboratoryUniversity of ToulonToulonFrance
  3. 3.MIO LaboratoryUniversity of ToulonToulonFrance
  4. 4.Laboratory of Computational and Process EngineeringLappeenranta-Lahti University of Technology LUTLappeenrantaFinland

Personalised recommendations