Advertisement

Photoluminescence Properties of Dy3+ Activated CaWO4 Nanophosphors: a Potential Single Phase near White Light Emitter

  • Takhe Yaba
  • Ranjoy Wangkhem
  • N. Shanta SinghEmail author
ORIGINAL ARTICLE
  • 17 Downloads

Abstract

A multicolor tunable CaWO4:xDy3+ nanophosphors have been synthesized via hydrothermal route. X-Ray Diffraction and Fourier transform infrared confirm the formation of CaWO4:Dy3+ nanophosphors. Transmission electron microscopy image and selected area electron diffraction (SAED) reveal the formation of nanosize and crystalline CaWO4:Dy3+. Dependence of energy transfer rate from WO42− to the activator (Dy3+) is observed from the photoluminescence studies. An enhancement of energy transfer efficiency from 36% to 90% is observed after annealing the as-prepared samples at 800 °C. The exchange type energy transfer mechanism is observed to be dominant in as-prepared samples while the electric dipole-dipole interaction is dominant in annealed samples. Variation in energy transfer rate from the host to Dy3+ activator ions leads to the tuning of color emission from this nanophosphor. A near white light emission could be achieved with 6 at.% Dy3+ doped CaWO4 annealed at 800 °C with x = 0.310 and y = 0.327.

Keywords

Luminescence Energy transfer Color tunable White light emission 

Notes

Acknowledgments

Authors thank Science & Engineering Research Board (DST), New Delhi, for financial support (EMR Project No. EMR/2014/001211). T. Yaba thanks UGC, New Delhi for financial support. Authors thank SAIF, NEHU, Shillong for TEM facility.

References

  1. 1.
    Singh NS, Sahu NK, Bahadur D (2014) Multicolor tuning and white light emission from lanthanide doped YPVO4 nanorods: energy transfer studies. J Mater Chem C 2:548–555CrossRefGoogle Scholar
  2. 2.
    Pradal N, Chadeyron G, Potdevin A, Deschamps Y, Mahiou R (2013) Elaboration and optimization of Ce-doped Y3Al5O12 nanopowder dispersions. J Eur Ceram Soc 33:1935–1945CrossRefGoogle Scholar
  3. 3.
    Khanna A, Dutta PS (2012) CaWO4: Eu3+, Dy3+, Tb3+ phosphor crystals for solid-state lighting applications. ECS Trans 41(37):39–48CrossRefGoogle Scholar
  4. 4.
    Varun S, Kalra M, Gandhi M (2015) White light emission through downconversion of terbium and europium doped CeF3 nanophosphors. J Fluoresc 25(5):1501–1505CrossRefGoogle Scholar
  5. 5.
    Smet PF, Korthout K, Haecke JEV, Poelman D (2007) Using rare earth doped thiosilicate phosphors in white light emitting LEDs: towards low colour temperature and high colour rendering. Mater Sci Eng B 146:264–268CrossRefGoogle Scholar
  6. 6.
    Kim JS, Jeon PE, Choi JC, Park HL, Muo SI, Kim GC (2004) Warm-white-light emitting diode utilizing a single-phase full-color Ba3MgSi2O8:Eu2+, Mn2+ phosphor. Appl Phys Lett 84(15):2931–2933CrossRefGoogle Scholar
  7. 7.
    Wangkhem R, Yaba T, Singh NS, Ningthoujam RS (2018) Red emission enhancement from CaMoO4:Eu3+ by co-doping of Bi3+ for near UV/blue LED pumped white pcLEDs: energy transfer studies. J Appl Phys 123:124303CrossRefGoogle Scholar
  8. 8.
    Sato Y, Takahashi N, Sato S (1996) Full-color fluorescent display devices using a near-UV light-emitting diode. Jpn J Appl Phys 35:838–839CrossRefGoogle Scholar
  9. 9.
    Shang M, Li C, Lin J (2014) How to produce white light in a single-phase host? Chem Soc Rev 43:1372–1386CrossRefGoogle Scholar
  10. 10.
    Liu B, Kong L, Shi C (2007) White-light long-lasting phosphor Sr2MgSi2O7:Dy3+. J Lumin 122-123:121–124CrossRefGoogle Scholar
  11. 11.
    Liu B, Shi C, Qi Z (2005) Potential white-light long-lasting phosphor: Dy3+ −doped aluminate. Appl Phys Lett 86:191111CrossRefGoogle Scholar
  12. 12.
    Ye S, Xiao F, Pan YX, Ma YY, Zhang QY (2010) Phosphors in phosphor-converted white light-emitting diodes: recent advances in materials, techniques and properties. Mater Sci Eng R 71:1–34CrossRefGoogle Scholar
  13. 13.
    Nair GB, Dhoble SJ (2017) White light emitting MZr4(PO4)6:Dy3+ (M = ca, Sr, Ba) phosphors for WLEDs. J Fluoresc 27(2):575–585CrossRefGoogle Scholar
  14. 14.
    Tanaka K, Miyajima T, Shivai N, Zhang Q, Nakata R (1995) Laser photochemical ablation of CdWO4 studied with the time-of-flight mass spectrometric technique. J Appl Phys 77(12):6581–6587CrossRefGoogle Scholar
  15. 15.
    Wang H, Medina FD, Zhou YD, Zhang QN (1992) Temperature dependence of the polarized Raman spectra of ZnWO4 single crystals. Phys Rev B 45(18):10356–10362CrossRefGoogle Scholar
  16. 16.
    Basu S, Naidu BS, Viswanadh B, Sudarson V, Jha SN, Bhattacharyya D, Vatsa RK (2014) Nature of WO4 tetrahedra in blue light emitting CaWO4 probed through the EXAFS technique. RSC Adv 4:15606–15612CrossRefGoogle Scholar
  17. 17.
    Grasser R, Scharmann A, Strack KR (1982) On the intrinsic nature of the blue luminescence in CaWO4. J Lumin 27:263–272CrossRefGoogle Scholar
  18. 18.
    Mv S, Ciemniak C, Erb A, Fv F, Gütlein A, Lanfranchi J-C, Lepelmeier J, Münster A, Potzel W, Roth S, Strauss R, Thalhammer U, Wawoczny S, Willers M, Zöller A (2012) Influence of annealing on the optical and scintillation properties of CaWO4 single crystals. Opt Mater 34:1843–1848CrossRefGoogle Scholar
  19. 19.
    Kang F, Peng M (2014) A new study on the energy transfer in the color-tunable phosphor CaWO4:bi. Dalton Trans 43:277–284CrossRefGoogle Scholar
  20. 20.
    Treadaway MJ, Powell RC (1974) Luminescence of calcium tungstate crystals. J Chem Phys 61(10):4003–4011CrossRefGoogle Scholar
  21. 21.
    Feldmann C, Justel T, Ronda CR, Schmidt PJ (2003) Inorganic luminescent materials: 100 years of research and application. Adv Funct Mater 13(7):511–516CrossRefGoogle Scholar
  22. 22.
    Hoppe HA (2009) Recent developments in the field of inorganic phosphors. Angew Chem Int Ed 48:3572–3582CrossRefGoogle Scholar
  23. 23.
    Treadaway MJ, Powell RC (1975) Energy transfer in samarium-doped calcium tungstate crystals. Phys Rev B 11(2):862–874CrossRefGoogle Scholar
  24. 24.
    Su Y, Li L, Li G (2009) Generation of tunable wavelength lights in core-shell CaWO4 microspheres via co-doping with Na+ and ln3+ (Ln = Tb, Sm, Dy, Eu). J Mater Chem 19:2316–2322CrossRefGoogle Scholar
  25. 25.
    Du P, Bharat LK, Guan XY, Yu JS (2015) Synthesis and luminescence properties of color-tunable Dy3+-activated CaWO4 phosphors. J Appl Phys 117:083112CrossRefGoogle Scholar
  26. 26.
    Sharma KG, Singh NS, Devi YR, Singh NR, Singh SD (2013) Effects of annealing on luminescence of CaWO4:Eu3+ nanoparticles and its thermoluminescence study. J Alloys Compd 556:94–101CrossRefGoogle Scholar
  27. 27.
    Liao J, Qiu B, Wen H, You W (2009) Photoluminescence green in microspheres of CaWO4:Tb3+ processed in conventional hydrothermal. Opt Mater 31:1513–1516CrossRefGoogle Scholar
  28. 28.
    Singh LR, Ningthoujam RS, Singh NS, Singh SD (2009) Probing Dy3+ ions on the surface of nanocrystalline YVO4: luminescence study. Opt Mater 32:286–292CrossRefGoogle Scholar
  29. 29.
    Zhang Y, Gong W, Yu J, Pang H, Song Q, Ning G (2015) A new single-phase white-light-emitting CaWO4:Dy3+ phosphor: synthesis, luminescence and energy transfer. RSC Adv 5:62527–62533CrossRefGoogle Scholar
  30. 30.
    Xie W, Liu G, Dong X, Wang J, Yu W (2016) Doping Eu3+/Sm3+ into CaWO4:Tm3+, Dy3+ phosphors and their luminescent properties, tunable color and energy transfer. RSC Adv 6:26239–26246CrossRefGoogle Scholar
  31. 31.
    Sharma KG, Singh NR (2013) Synthesis and luminescence properties of CaMO4:Dy3+ (M = W, Mo) nanoparticles prepared via an ethylene glycol route. New J Chem 37:2784–2791CrossRefGoogle Scholar
  32. 32.
    Du C, Lang F, Su Y, Liu Z (2013) Low temperature nanocasting synthesis of lanthanide ions (ln = Tb, Eu, Dy) doped CaWO4 mesoporous structure with efficiently luminescent properties. J Colloid Interface Sci 394:94–99CrossRefGoogle Scholar
  33. 33.
    Byrappa K, Adschiri T (2007) Hydrothermal technology for nanotechnology. Prog Cryst Growth Charact Mater 53:117–166CrossRefGoogle Scholar
  34. 34.
    Patterson AL (1939) The Scherrer formula for X-ray particle size determination. Phys Rev 56:978–982CrossRefGoogle Scholar
  35. 35.
    Koczkur KM, Mourdikoudis S, Polavarapu L, Skrabalak SE (2015) Polyvinylpyrrolidone (PVP) in nanoparticle synthesis. Dalton Trans 44:17883–17905CrossRefGoogle Scholar
  36. 36.
    Dhumale VA, Gangwar RK, Datar SS, Sharma RB (2012) Reversible aggregation control of polyvinylpyrrolidone capped gold nanoparticles as a function of Ph. Mater. Express 2(4):311–318CrossRefGoogle Scholar
  37. 37.
    Omkaram I, Buddhudu S (2009) Photoluminescence properties of MgAl2O4:Dy3+ powder phosphor. Opt Mater 32:8–11CrossRefGoogle Scholar
  38. 38.
    Singh NS, Ningthoujam RS, Luwang MN, Singh SD, Vasta RK (2009) Luminescence, lifetime and quantum yield studies of YVO4:Ln3+ (Ln3+ = Dy3+, Eu3+) nanoparticles: concentration and annealing effects. Chem Phys Lett 480:237–242CrossRefGoogle Scholar
  39. 39.
    Nayar R, Tamboli S, Sahu AK, Nayar V, Dhoble SJ (2017) Synthesis and luminescence characterization of LaBO3:Dy3+ phosphor for stress sensing application. J Fluoresc 27(1):251–261CrossRefGoogle Scholar
  40. 40.
    Cavalcante LS, Longo VM, Sczancoski JC, Almeida MAP, Batista AA, Varela JA, Orlandi MO, Longo E, Li MS (2012) Electronic structure, growth mechanism and photoluminescence of CaWO4 crystals. CrystEngComm 14:853–868CrossRefGoogle Scholar
  41. 41.
    Hou Z, Li C, Yang J, Lian H, Yang P, Chai R, Chang Z, Lin J (2009) One-dimensional CaWO4 and CaWO4:Tb3+ nanowires and nanotubes: electrospinning preparation and luminescent properties. J Mater Chem 19:2737–2746CrossRefGoogle Scholar
  42. 42.
    Tian Y, Chen B, Tian B, Hua R, Sun J, Cheng L, Zhong H, Li X, Zhang J, Zheng Y, Yu T, Huang L, Meng Q (2011) Concentration-dependent luminescence and energy transfer of flower-like Y2(MoO4)3:Dy3+ phosphor. J Alloys Compd 509:6096–6101CrossRefGoogle Scholar
  43. 43.
    Jiao M, Jia Y, Lu W, Lv W, Zhao Q, Shao B, You H (2014) Sr3GdNa(PO4)3F:Eu2+,Mn2+: a potential color tunable phosphor for white LEDs. J Mater Chem C 2:90–97CrossRefGoogle Scholar
  44. 44.
    Zhang Q, Meng Q, Sun W (2013) The concentration dependence of luminescent properties for Eu3+ doped CaWO4 micron spherical phosphors. Opt Mater 35:915–922CrossRefGoogle Scholar
  45. 45.
    Dexter DL (1953) A theory of sensitized luminescence in solids. J Chem Phys 21:836–850CrossRefGoogle Scholar
  46. 46.
    Blasse G, Grabmaier BC (1994) Luminescent Materials, 1st edn. Springer-Verlag, Berlin HeidelbergCrossRefGoogle Scholar
  47. 47.
    Smith T, Guild J (1931–32) The C.I.E. colorimetric standards and their use. Trans. Opt. Soc 33:73–134Google Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Department of PhysicsNagaland UniversityLumamiIndia

Personalised recommendations