Journal of Fluorescence

, Volume 29, Issue 2, pp 425–434 | Cite as

A Highly Selective “Turn-on” Fluorescent Probe for Detection of Fe3+ in Cells

  • Xiaorui Cao
  • Feifei Zhang
  • Yinjuan BaiEmail author
  • Xiaohu Ding
  • Wei Sun


A new “turn-on” fluorescent probe Py based on rhodamine and piperonaldehyde was designed and synthesized for detecting Fe3+ in cells. The free probe Py was non-fluorescent. While only upon addition of Fe3+, the significant increase of the fluorescence and color were observed which could be visible directly by “naked-eye”. The probe Py shows high selectivity and sensitivity for Fe3+ over other common metal ions in EtOH-H2O (3/2, v/v) mixed solution. The association constant and the detection limit were calculated to be 4.81 × 104 M−1 and 1.18 × 10−8 mol/L respectively. The introduction of piperonaldehyde unit could increase probe rigidity which could enhance its optical properties. Meanwhile, the binding mode between Py and Fe3+ was found to be a 1:1 complex formation. The density functional theory (DFT) calculations were performed which would further confirm the recognition mechanism between probe Py and Fe3+. In addition, the probe has been proved to be reversible for detecting Fe3+. Moreover, the probe Py was used to detect Fe3+ in cells successfully.


Fluorescent probe Rhodamine Fe3 + Cell imaging DFT calculations 



We gratefully acknowledge financial support from the National Natural Science Foundation of China (Grant no.21042002).

Supplementary material

10895_2019_2351_MOESM1_ESM.docx (934 kb)
ESM 1 (DOCX 933 kb)


  1. 1.
    Zhang Y, Wang Y-T, Kang X-X, Ge M, Feng H-Y, Han J, Wang D-H, Zhao D-Z (2018) Azobenzene disperse dye-based colorimetric probe for naked eye detection of Cu2+ in aqueous media: spectral properties, theoretical insights, and applications. J Photoch Photobio A 356:652–660CrossRefGoogle Scholar
  2. 2.
    Ozdemir M, Zhang Y, Guo M (2018) A highly selective “off-on” fluorescent sensor for subcellular visualization of labile iron(III) in living cells. Inorg Chem Commun 90:73–77CrossRefGoogle Scholar
  3. 3.
    Wang J, Zhang D, Liu Y, Ding P, Wang C, Ye Y, Zhao Y (2014) A N-stablization rhodamine-based fluorescent chemosensor for Fe3+ in aqueous solution and its application in bioimaging. Sensors Actuators B Chem 191:344–350CrossRefGoogle Scholar
  4. 4.
    Zhu C, Wang M, Qiu L, Hao S, Li K, Guo Z, He W (2018) A mitochondria-targeting fluorescent Fe3+ probe and its application in labile Fe3+ monitoring via imaging and flow cytometry. Dyes Pigments 157:328–333CrossRefGoogle Scholar
  5. 5.
    Yang Z, Bai X, Ma S, Liu X, Zhao S, Yang Z (2017) A benzoxazole functionalized fluorescent probe for selective Fe3+ detection and intracellular imaging in living cells. Anal Methods 9:18–22CrossRefGoogle Scholar
  6. 6.
    Sen S, Sarkar S, Chattopadhyay B, Moirangthem A, Basu A, Dhara K, Chattopadhyay P (2012) A ratiometric fluorescent chemosensor for iron: discrimination of Fe2+ and Fe3+ and living cell application. Analyst 137:3335–3342CrossRefGoogle Scholar
  7. 7.
    Long L, Zhou L, Lin W, Meng S, Gong A, Chi Z (2014) A ratiometric fluorescent probe for iron(III) and its application for detection of iron(III) in human blood serum. Anal Chim Acta 812:145–151CrossRefGoogle Scholar
  8. 8.
    Bao X, Shi J, Nie X, Zhou B, Wang X, Zhang L, Liao H, Pang T (2014) A new rhodamine B-based 'on-off' chemical sensor with high selectivity and sensitivity toward Fe(3+) and its imaging in living cells. Bioorg Med Chem 22:4826–4835CrossRefGoogle Scholar
  9. 9.
    Jeong Y, Yoon J (2012) Recent progress on fluorescent chemosensors for metal ions. Inorg Chim Acta 381:2–14CrossRefGoogle Scholar
  10. 10.
    Xu H, Ding H, Li G, Fan C, Liu G, Pu S (2017) A highly selective fluorescent chemosensor for Fe3+ based on a new diarylethene with a rhodamine 6G unit. RSC Adv 7:29827–29834CrossRefGoogle Scholar
  11. 11.
    Yang Y, Wang X, Cui Q, Cao Q, Li L (2016) Self-assembly of fluorescent organic nanoparticles for Iron(III) sensing and cellular imaging. ACS Appl Mater Interfaces 8:7440–7448CrossRefGoogle Scholar
  12. 12.
    Zheng M, Tan H, Xie Z, Zhang L, Jing X, Sun Z (2013) Fast response and high sensitivity europium metal organic framework fluorescent probe with chelating Terpyridine sites for Fe3+. ACS Appl Mater Interfaces 5:1078–1083CrossRefGoogle Scholar
  13. 13.
    Pires MM, Chmielewski J (2008) Fluorescence imaging of cellular glutathione using a latent rhodamine. Org Lett 10:837–840CrossRefGoogle Scholar
  14. 14.
    Zhang JF, Zhou Y, Yoon J, Kim Y, Kim SJ, Kim JS (2010) Naphthalimide modified rhodamine derivative: Ratiometric and selective fluorescent sensor for Cu2+ based on two different approaches. Org Lett 12:3852–3855CrossRefGoogle Scholar
  15. 15.
    Kang H, Fan C, Xu H, Liu G, Pu S (2018) A highly selective fluorescence switch for Cu2+ and Fe3+ based on a new diarylethene with a triazole-linked rhodamine 6G unit. Tetrahedron 74:4390–4399CrossRefGoogle Scholar
  16. 16.
    Qin JC, Yang ZY, Wang GQ, Li CR (2015) FRET-based rhodamine–coumarin conjugate as a Fe3+ selective ratiometric fluorescent sensor in aqueous media. Tetrahedron Lett 56:5024–5029CrossRefGoogle Scholar
  17. 17.
    You Q-H, Huang H-B, Zhuang Z-X, Wang X-R, Chan W-H (2016) A new rhodamine-based fluorescent probe for the discrimination of Fe3+ from Fe2+. Bull Kor Chem Soc 37:1772–1777CrossRefGoogle Scholar
  18. 18.
    Ge F, Ye H, Zhang H, Zhao B-X (2013) A novel ratiometric probe based on rhodamine B and coumarin for selective recognition of Fe(III) in aqueous solution. Dyes Pigments 99:661–665CrossRefGoogle Scholar
  19. 19.
    Zhao J, Gao Q, Zhang F, Sun W, Bai Y (2016) Two colorimetric fluorescent probes for detection Fe3+: synthesis, characterization and theoretical calculations. J Lumin 180:278–286CrossRefGoogle Scholar
  20. 20.
    Chen X, Sun W, Bai Y, Zhang F, Zhao J, Ding X (2018) Novel rhodamine Schiff base type naked-eye fluorescent probe for sensing Fe(3+) and the application in cell. Spectrochim Acta A Mol Biomol Spectrosc 191:566–572CrossRefGoogle Scholar
  21. 21.
    Zhang J, Zhang L, Wei Y, Chao J, Shuang S, Cai Z, Dong C (2014) A selectively rhodamine-based colorimetric probe for detecting copper(II) ion. Spectrochim Acta A Mol Biomol Spectrosc 122:191–197CrossRefGoogle Scholar
  22. 22.
    Hao Z, Fan J, Jing L, Hu M, Cao J, Jing W, Li H, Liu X, Peng X (2012) Optical Cu2+ probe bearing an 8-hydroxyquinoline subunit: high sensitivity and large fluorescence enhancement. Talanta 93:55CrossRefGoogle Scholar
  23. 23.
    Bao X, Cao X, Nie X, Xu Y, Guo W, Zhou B, Zhang L, Liao H, Pang T (2015) A new selective fluorescent chemical sensor for Fe3+ based on rhodamine B and a 1,4,7,10-tetraoxa-13-azacyclopentadecane conjugate and its imaging in living cells. Sensors Actuators B Chem 208:54–66CrossRefGoogle Scholar
  24. 24.
    Li Z, Zhao JL, Wu YT, Mu L, Zeng X, Jin Z, Wei G, Xie N, Redshaw C (2017) Highly selective recognition of Al(3+) and I(−) ions using a bi-functional fluorescent probe. Org Biomol Chem 15:8627–8633CrossRefGoogle Scholar
  25. 25.
    Ruan Q, Mu L, Zeng X, Zhao JL, Zeng L, Chen ZM, Yang C, Wei G, Redshaw C (2018) A three-dimensional (time, wavelength and intensity) functioning fluorescent probe for the selective recognition/discrimination of cu(2+), hg(2+), Fe(3+) and F(−) ions. Dalton Trans 47:3674–3678CrossRefGoogle Scholar
  26. 26.
    Li X, Yin Y, Deng J, Zhong H, Tang J, Chen Z, Yang L, Ma LJ (2016) A solvent-dependent fluorescent detection method for Fe(3+) and hg(2+) based on a rhodamine B derivative. Talanta 154:329–334CrossRefGoogle Scholar
  27. 27.
    OuYang H, Gao Y, Yuan Y (2013) A highly selective rhodamine-based optical–electrochemical multichannel chemosensor for Fe3+. Tetrahedron Lett 54:2964–2966 26CrossRefGoogle Scholar
  28. 28.
    Chai M, Zhang D, Wang M, Hong H, Ye Y, Zhao Y (2012) Four rhodamine B-based fluorescent chemosensor for Fe3+ in aqueous solution. Sensors Actuators B Chem 174:231–236CrossRefGoogle Scholar
  29. 29.
    Liu Y, Shen R, Ru J, Yao X, Yang Y, Liu H, Tang X, Bai D, Zhang G, Liu W (2016) A reversible rhodamine 6G-based fluorescence turn-on probe for Fe3+ in water and its application in living cell imaging. RSC Adv 6:111754–111759CrossRefGoogle Scholar
  30. 30.
    Kagit R, Yildirim M, Ozay O, Yesilot S, Ozay H (2014) Phosphazene based multicentered naked-eye fluorescent sensor with high selectivity for Fe3+ ions. Inorg Chem 53:2144–2151CrossRefGoogle Scholar
  31. 31.
    Yan L, Yang M, Leng X, Zhang M, Long Y, Yang B (2016) A new dual-function fluorescent probe of Fe3+ for bioimaging and probe-Fe3+ complex for selective detection of CN. Tetrahedron 72:4361–4367CrossRefGoogle Scholar
  32. 32.
    Senthil Murugan A, Vidhyalakshmi N, Ramesh U, Annaraj J (2018) In vivo bio-imaging studies of highly selective, sensitive rhodamine based fluorescent chemosensor for the detection of Cu2+/Fe3+ ions. Sensors Actuators B Chem 274:22–29CrossRefGoogle Scholar
  33. 33.
    Wang Y, Song F, Zhu J, Zhang Y, Du L, Kan C (2018) Highly selective fluorescent probe based on a rhodamine B and furan-2-carbonyl chloride conjugate for detection of Fe3+ in cells. Tetrahedron Lett 59:3756–3762CrossRefGoogle Scholar
  34. 34.
    Sharma N, Reja SI, Gupta N, Bhalla V, Kaur D, Arora S, Kumar M (2017) A highly selective fluorescent probe for Fe3+ in living cells: a stress induced cell based model study. Org Biomol Chem 15:1006–1012CrossRefGoogle Scholar
  35. 35.
    Weerasinghe AJ, Schmiesing C, Varaganti S, Ramakrishna G, Sinn E (2010) Single- and multiphoton turn-on fluorescent Fe3+ sensors based on Bis(rhodamine). J Phys Chem B 114:9413–9419CrossRefGoogle Scholar
  36. 36.
    Liu P, Luo A, Wang Y, Hu J, Huang Q, Wang H (2018) A bis-(rhodamine)-based off–on colorimetric and fluorescent probe for Fe3+ ion detection in serum and bioimaging. Chem Pap 72:2575–2587CrossRefGoogle Scholar
  37. 37.
    Zhao N, Xuan S, Fronczek FR, Smith KM, Vicente MGH (2017) Enhanced Hypsochromic shifts, quantum yield, and π–π interactions in a meso,β-Heteroaryl-fused BODIPY. J Organomet Chem 82:3880–3885CrossRefGoogle Scholar
  38. 38.
    Kaewtong C, Noiseephum J, Uppa Y, Morakot N, Morakot N, Wanno B, Tuntulani T, Pulpoka B (2010) A reversible Em-FRET rhodamine-based chemosensor for carboxylate anions using a ditopic receptor strategy. New J Chem 34:1104–1108CrossRefGoogle Scholar
  39. 39.
    Thordarson P (2011) Determining association constants from titration experiments in supramolecular chemistry. Chem Soc Rev 40:1305–1323CrossRefGoogle Scholar
  40. 40.
    Reed AE, Curtiss LA, Weinhold F (1988) Intermolecular interactions from a natural bond orbital, donor-acceptor viewpoint. Chem Rev 88:899–926CrossRefGoogle Scholar
  41. 41.
    Pandith A, Kumar A, Kim HS (2015) 9-N-Alkylaminomethylanthracene probes for selective fluorescence sensing of pentafluorophenol. RSC Adv 5:81808–81816CrossRefGoogle Scholar
  42. 42.
    Zhang Q, Liu X-J, He R-C, Guo C-B, Zhao W-Z, Zeng C-C, Yin L-P (2018) Development of a fluorescent-type sensor based on rhodamine B for Fe(III) determination. Chem Lett 47:122–125CrossRefGoogle Scholar
  43. 43.
    Zhou T, Chen X, Hua Q, Lei W, Hao Q, Zhou B, Su C, Bao X (2017) Synthesis and evaluation of a new furfuran-based rhodamine B fluorescent chemosensor for selective detection of Fe3+ and its application in living-cell imaging. Sensors Actuators B Chem 253:292–301CrossRefGoogle Scholar
  44. 44.
    Mallick D, Biswal B, Thirunavoukkarasu M, Mohanty R, Bag B (2017) Signalling probes appended with two rhodamine derivatives: inter-component preferences, Fe(III)-ion selective fluorescence responses and bio-imaging in plant species. New J Chem 41:15144–15156CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  • Xiaorui Cao
    • 1
  • Feifei Zhang
    • 1
  • Yinjuan Bai
    • 1
    Email author
  • Xiaohu Ding
    • 1
  • Wei Sun
  1. 1.Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of Ministry of Education, College of Chemistry and Materials ScienceNorthwest UniversityXi’anPeople’s Republic of China

Personalised recommendations