Advertisement

Hydrophilic Truxene Derivative as a Fluorescent off-on Sensor for Copper (II) Ion and Phosphate Species

  • Pornpat Sam-ang
  • Komthep Silpcharu
  • Mongkol Sukwattanasinitt
  • Paitoon RashatasakhonEmail author
ORIGINAL ARTICLE
  • 32 Downloads

Abstract

A new symmetrical truxene derivative (TP3) containing three dipicolylamino peripheral groups is successfully synthesized in four synthetic steps with an overall yield of 42%. This hydrophilic fluorescent compound exhibits a maximum absorption wavelength at 375 nm, an emission maximum at 474 nm with an outstanding 58% quantum efficiency in THF-HEPES buffer mixture. The compound shows a highly selective fluorescence quenching towards Cu(II) ion with a detection limit of 0.06 ppm. The results from mass spectrometry and Job plot indicate that a 1:1 complex between TP3 and Cu(II) ion is responsible for the signal quenching. Interestingly, this TP3-Cu complex can be used as a turn-on sensor for hydrogen phosphate and nucleoside phosphates. The limit of detection for hydrogen phosphate is estimated at 8.7 nM. The signal restoration involves a displacement of TP3 in the complex by the phosphates which have strong coordination abilities with Cu(II) ion.

Keywords

Fluorescence Sensor Picolylamine Truxene Copper (II) ion Phosphate 

Notes

Acknowledgments

This work was supported by the Grant for International Research Integration: Chula Research Scholar and the National Nanotechnology Center (NANOTEC), NSTDA, Ministry of Science and Technology, Thailand, through its program of Research Network NANOTEC (RNN). PS thanks to the Overseas Research Experience Scholarship for Graduate Student, the 90th Anniversary of Chulalongkorn University Fund (Ratchadapiseksomphot fund) and the financial support from the Pibulsongkram Rajabhat University.

Supplementary material

10895_2019_2350_MOESM1_ESM.docx (1.5 mb)
ESM 1 (DOCX 1543 kb)

References

  1. 1.
    Kaur B, Kaur N, Kumar S (2018) Colorimetric metal ion sensors – A comprehensive review of the years 2011–2016. Coord Chem Rev 358:13–69CrossRefGoogle Scholar
  2. 2.
    Gale PA, Caltagirone C (2018) Fluorescent and colorimetric sensors for anionic species. Coord Chem Rev 354:2–27CrossRefGoogle Scholar
  3. 3.
    Wong JK-H, Todd MH, Rutledge PJ (2017) Recent Advances in Macrocyclic Fluorescent Probes for Ion Sensing. Molecules 22:200CrossRefGoogle Scholar
  4. 4.
    Carter KP, Young AM, Palmer AE (2014) Fluorescent Sensors for Measuring Metal Ions in Living Systems. Chem Rev 114:4564–4601CrossRefGoogle Scholar
  5. 5.
    Formica M, Fusi V, Giorgi L, Micheloni M (2012) New fluorescent chemosensors for metal ions in solution. Coord Chem Rev 256:170–192CrossRefGoogle Scholar
  6. 6.
    Scheiber I, Dringen R, Mercer JFB (2013) Copper: Effects of Deficiency and Overload. Met Ions Life Sci 13:359CrossRefGoogle Scholar
  7. 7.
    Waggoner DJ, Bartnikas TB, Gitlin JD (1999) The Role of Copper in Neurodegenerative Disease. Neurobiol Dis 6:221–230CrossRefGoogle Scholar
  8. 8.
    Strausak D, Mercer JFB, Dieter HH, Stremmel W, Multhaup G (2001) Copper in disorders with neurological symptoms: Alzheimer’s, Menkes, and Wilson diseases. Brain Res Bull 55:175–185CrossRefGoogle Scholar
  9. 9.
    Kumar N, Low PA (2004) J Neurol 251:747CrossRefGoogle Scholar
  10. 10.
    Halfdanarson TR, Kumar N, Li C-Y, Phyliky RL, Hogan WJ (2008) Hematological manifestations of copper deficiency: a retrospective review. Eur J Haematol 80:523–531CrossRefGoogle Scholar
  11. 11.
    Knutsson J, Rauch S, Morrison GM (2013) Environ Sci-Proc Imp 15:955Google Scholar
  12. 12.
    Warwick C, Guerreiro A, Soares A (2013) Sensing and analysis of soluble phosphates in environmental samples: A review. Biosens Bioelectron 41:1–11CrossRefGoogle Scholar
  13. 13.
    Berchmans S, Issa TB, Singh P (2012) Determination of inorganic phosphate by electroanalytical methods: A review. Anal Chim Acta 729:7–20CrossRefGoogle Scholar
  14. 14.
    Jia X, Chen D, Bin L, Lu H, Zhang R, Zheng Y (2016) Highly selective and sensitive phosphate anion sensors based on AlGaN/GaN high electron mobility transistors functionalized by ion imprinted polymer. Sci Rep 6:27728CrossRefGoogle Scholar
  15. 15.
    De Marco R, Pejcic B, Chen Z (1998) Flow injection potentiometric determination of phosphate in waste waters and fertilisers using a cobalt wire ion-selective electrode. Analyst 123:1635–1640CrossRefGoogle Scholar
  16. 16.
    Brando C, Hoffman T, Bonvini E (1990) High-performance liquid chromatographic separation of inositol phosphate isomers employing a reversed-phase column and a micellar mobile phase. J Chromatogr B Biomed Sci Appl 529:65–80CrossRefGoogle Scholar
  17. 17.
    Sekiguchi Y, Mitsuhashi N, Kokaji T, Miyakoda H, Mimura T (2005) Development of a comprehensive analytical method for phosphate metabolites in plants by ion chromatography coupled with tandem mass spectrometry. J Chromatogr A 1085:131–136CrossRefGoogle Scholar
  18. 18.
    Lakowicz JR (2006) Principles of fluorescence spectroscopy. Springer, New YorkCrossRefGoogle Scholar
  19. 19.
    Saleem M, Rafiq M, Hanif M, Shaheen MA, Seo SY (2018) A Brief Review on Fluorescent Copper Sensor Based on Conjugated Organic Dyes. J Fluoresc 28:97–165CrossRefGoogle Scholar
  20. 20.
    Lee S, Yuen KKY, Jolliffe KA, Yoon J (2015) Fluorescent and colorimetric chemosensors for pyrophosphate. Chem Soc Rev 44:1749–1762CrossRefGoogle Scholar
  21. 21.
    Fatino A, Steinkruger JD, Hao J, Yang S, Zhou C (2018) Luminescent gold nanoparticles as dual-modality sensors for selective copper (II) ion detection. Mater Lett 232:70–73CrossRefGoogle Scholar
  22. 22.
    Qin J, Dong B, Gao R, Su G, Han J, Li X, Liu W, Wang W, Cao L (2017) Water-soluble silica-coated ZnS : Mn nanoparticles as fluorescent sensors for the detection of ultratrace copper(ii) ions in seawater. Anal Methods 9:322–328CrossRefGoogle Scholar
  23. 23.
    Shenashen MA, El-Safty SA, Elshehy EA (2013) Architecture of optical sensor for recognition of multiple toxic metal ions from water. J Hazard Mater 260:833–843CrossRefGoogle Scholar
  24. 24.
    Viswanathan K (2012) Utilizing a tripeptide conjugated fluorescent hybrid nanoparticles as a fluorescence sensor for the determination of copper ions. Sens Actuator A Phys 175:15–18CrossRefGoogle Scholar
  25. 25.
    Zhang J, Li B, Zhang L, Jiang H (2012) An optical sensor for Cu(ii) detection with upconverting luminescent nanoparticles as an excitation source. Chem Commun 48:4860CrossRefGoogle Scholar
  26. 26.
    Kirubaharan CJ, Kalpana D, Lee YS, Kim AR, Yoo DJ, Nahm KS, Kumar GG (2012) Biomediated Silver Nanoparticles for the Highly Selective Copper(II) Ion Sensor Applications. Ind Eng Chem Res 51:7441–7446CrossRefGoogle Scholar
  27. 27.
    Jang HJ, Ahn HM, Kim MS, Kim C (2017) A highly selective colorimetric chemosensor for sequential detection of Fe 3+ and pyrophosphate in aqueous solution. Tetrahedron 73:6624–6631CrossRefGoogle Scholar
  28. 28.
    Liu X, Wang P, Fu J, Yao K, Xue K, Xu K (2017) Turn-on fluorescent sensor for Zinc and Cadmium ions based on quinolone and its sequential response to phosphate. J Lumin 186:16–22CrossRefGoogle Scholar
  29. 29.
    Jiang S-Q, Zhou Z-Y, Zhuo S-P, Shan G-G, Xing L-B, Wang H-N, Su Z-M (2015) Rational design of a highly sensitive and selective “turn-on” fluorescent sensor for PO43−detection. Dalton Trans 44:20830–20833CrossRefGoogle Scholar
  30. 30.
    Wang K-P, Zhang S-J, Lv C-D, Shang H-S, Jin Z-H, Chen S, Zhang Q, Zhang Y-B, Hu Z-Q (2017) A highly sensitive and selective turn-on fluorescent sensor for dihydrogen phosphate in living cells. Sens Actuator B Chem. 247:791–796CrossRefGoogle Scholar
  31. 31.
    Earmrattana N, Sukwattanasinitt M, Rashatasakhon P (2012) Water-soluble anionic fluorophores from truxene. Dyes Pigments 93:1428–1433CrossRefGoogle Scholar
  32. 32.
    Azuma Y, Imai H, Yoshimura T, Kawabata T, Imanishi M, Futaki S (2012) Dipicolylamine as a unique structural switching element for helical peptides. Org Biomol Chem 10:6062–6068CrossRefGoogle Scholar
  33. 33.
    Zhang JF, Kim S, Han JH, Lee S-J, Pradhan T, Cao QY, Lee SJ, Kang C, Kim JS (2011) Pyrophosphate-Selective Fluorescent Chemosensor Based on 1,8-Naphthalimide–DPA–Zn(II) Complex and Its Application for Cell Imaging. Org Lett 13:5294–5297CrossRefGoogle Scholar
  34. 34.
    O’Neil EJ, Smith BD (2006) Anion recognition using dimetallic coordination complexes. Coord Chem Rev 250:3068–3080CrossRefGoogle Scholar
  35. 35.
    Luo H-Y, Zhang X-B, He C-L, Shen G-L, Yu R-Q (2008) Synthesis of dipicolylamino substituted quinazoline as chemosensor for cobalt(II) recognition based on excited-state intramolecular proton transfer. Spectrochim Acta A 70:337–342CrossRefGoogle Scholar
  36. 36.
    Hatai J, Bandyopadhyay S (2014) Altered selectivity of a dipicolylamine based metal ion receptor. Chem Commun 50:64–66CrossRefGoogle Scholar
  37. 37.
    Xue L, Wang H-H, Wang X-J, Jiang H (2008) Modulating Affinities of Di-2-picolylamine (DPA)-Substituted Quinoline Sensors for Zinc Ions by Varying Pendant Ligands. Inorg Chem 47:4310–4318CrossRefGoogle Scholar
  38. 38.
    Chen W-H, Xing Y, Pang Y (2011) A Highly Selective Pyrophosphate Sensor Based on ESIPT Turn-On in Water. Org Lett 13:1362–1365CrossRefGoogle Scholar
  39. 39.
    Jiang Z, Deng R, Tang L, Lu P (2008) A new fluorescent chemosensor detecting Zn2+ and Cu2+ in methanol/HEPES buffer solution. Sens Actuator B Chem 135:128–132CrossRefGoogle Scholar
  40. 40.
    Sam-ang P, Raksasorn D, Sukwattanasinitt M, Rashatasakhon P (2014) A nitroaromatic fluorescence sensor from a novel tripyrenyl truxene. RSC Adv 4:58077–58082CrossRefGoogle Scholar
  41. 41.
    Yang W, Chen X, Su H, Fang W, Zhang Y (2015) The fluorescence regulation mechanism of the paramagnetic metal in a biological HNO sensor. Chem Commun 51:9616–9619CrossRefGoogle Scholar
  42. 42.
    Hegetschweiler K, Saltman P (1986) Interaction of copper(II) with N-(2-hydroxyethyl)piperazine-N'-ethanesulfonic acid (HEPES). Inorg Chem 25:107–109CrossRefGoogle Scholar
  43. 43.
    Borase PN, Thale PB, Shankarling GS (2016) Dihydroquinazolinone based “turn-off” fluorescence sensor for detection of Cu 2+ ions. Dyes Pigments 134:276–284CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Department of Chemistry, Faculty of ScienceChulalongkorn UniversityBangkokThailand
  2. 2.Faculty of Science and TechnologyPibulsongkram Rajabhat UniversityPhitsanulokThailand
  3. 3.Nanotec-CU Center of Excellence on Food and Agriculture, Department of Chemistry, Faculty of ScienceChulalongkorn UniversityBangkokThailand

Personalised recommendations