Advertisement

Molecular and NLO Properties of Red Fluorescent Coumarins – DFT Computations Using Long-Range Separated and Conventional Functionals

  • Nagaiyan SekarEmail author
  • Santosh Katariya
  • Lydia Rhyman
  • Ibrahim A. Alswaidan
  • Ponnadurai RamasamiEmail author
ORIGINAL ARTICLE
  • 31 Downloads

Abstract

Comparative study of nonlinear optical properties of red fluorescent coumarins was carried out with density functional theory based ab initio method using the popular global hybrid (GH) and range separated hybrid (RSH) functionals and correlated with the spectroscopic values. The GHs - M06 L, PBE1PBE, M06, BHHLYP, M062X and M06HF and RSHs - HISSbPBE, wB97, wB97X, HSEH1PBE, CAM-B3LYP and wB97XD in combination with the double zeta basis function 6–311 + G(d,p) were used. The computed polarizability (α0), hyperpolarizability of the first order (β0) and second order (γ) computed by the RSHs are closer to the spectroscopic values compared to GHs. Polarizabilities computed with the functionals BHHLYP and M06-2X are closer with the spectroscopic values. Incorporation of additional cyano group enhances the NLO response. An increase in electrophilic nature contributed from the reduced orbital band gap culminating an increase in α0, β0, and γ in all the cases. The NLO response was found to be highly solvent dependent that is the polarity of the micro environment created by the solvents. To understand the agreement and accuracy among the NLO parameters obtained from the selected DFT functionals and the spectroscopic values, the mean absolute error (MAE) and vibrational contribution parameters are presented. Two photon absorption (TPA) cross section depends upon the molecular structure where π-framework is an important factor rather than number of acceptors.

Keywords

Red fluorescent coumarins DFT Nonlinear optical properties GHs and RSHs 

Notes

Acknowledgements

One of the authors SK is thankful to UGC for granting study leave (FIP) and SIES College for approving the study leave.

Supplementary material

10895_2018_2333_MOESM1_ESM.docx (603 kb)
ESM 1 (DOCX 603 kb)

References

  1. 1.
    Dalton LR, Benight SJ, Johnson LE, Knorr DB, Kosilkin I, Eichinger BE, Robinson BH, Jen AK (2011) Systematic Nanoengineering of soft matter organic. Chem Mater 23:430–445.  https://doi.org/10.1021/cm102166j CrossRefGoogle Scholar
  2. 2.
    Dalton LR, Sullivan P a, Bale DH (2010) Electric field poled organic electro-optic materials: state of the art and future prospects. Chem Rev 110:25–55.  https://doi.org/10.1021/cr9000429 CrossRefPubMedGoogle Scholar
  3. 3.
    Lupo D (1995) Molecular nonlinear optics: materials, physics, and devices. Edited byJ. Zyss, academic press, San Diego. CA 1994, XIII, 478 pp., hardcover, ISBN 0-12-784450-3. Adv Mater 7:248–249.  https://doi.org/10.1002/adma.19950070232 CrossRefGoogle Scholar
  4. 4.
    Frenette M, Hatamimoslehabadi M, Bellinger-Buckley S, Laoui S, Bag S, Dantiste O, Rochford J, Yelleswarapu C (2014) Nonlinear optical properties of multipyrrole dyes. Chem Phys Lett 608:303–307.  https://doi.org/10.1016/j.cplett.2014.06.002 CrossRefPubMedPubMedCentralGoogle Scholar
  5. 5.
    Liu X, Wang D, Gao H, Yang Z, Xing Y, Cao H, He W, Wang H, Gu J, Hu H (2016) Nonlinear optical properties of symmetrical and asymmetrical porphyrin derivatives with click chemistry modification. Dyes Pigments 134:155–163.  https://doi.org/10.1016/j.dyepig.2016.07.010 CrossRefGoogle Scholar
  6. 6.
    Song W, He C, Zhang W, Gao Y, Yang Y, Wu Y, Chen Z, Li X, Dong Y (2014) Synthesis and nonlinear optical properties of reduced graphene oxide hybrid material covalently functionalized with zinc phthalocyanine. Carbon N Y 77:1020–1030.  https://doi.org/10.1016/j.carbon.2014.06.018 CrossRefGoogle Scholar
  7. 7.
    Chen Z, Dong S, Zhong C, Zhang Z, Niu L, Li Z, Zhang F (2009) Photoswitching of the third-order nonlinear optical properties of azobenzene-containing phthalocyanines based on reversible host–guest interactions. J Photochem Photobiol A Chem 206:213–219.  https://doi.org/10.1016/j.jphotochem.2009.07.005 CrossRefGoogle Scholar
  8. 8.
    Song W, Xiao X, He C, Mao G, Gao Y, Chen Z, Dong Y, Wu Y (2016) Electrostatic self-assembled design strategy for tetracarboxylic Nickel (II) naphthalocyanine ultrathin film for high-performance nonlinear optical properties. Opt. Mater. (Amst). 60(6–12):6–12.  https://doi.org/10.1016/j.optmat.2016.07.002 CrossRefGoogle Scholar
  9. 9.
    Ashraf M, Teshome A, Kay AJ, Gainsford GJ, Bhuiyan MDH, Asselberghs I, Clays K (2013) NLO chromophores containing dihydrobenzothiazolylidene and dihydroquinolinylidene donors with an azo linker: synthesis and optical properties. Dyes Pigments 98:82–92.  https://doi.org/10.1016/j.dyepig.2013.01.010 CrossRefGoogle Scholar
  10. 10.
    Castro MCR, Schellenberg P, Belsley M, Fonseca AMC, Fernandes SSM, Raposo MMM (2012) Design, synthesis and evaluation of redox, second order nonlinear optical properties and theoretical DFT studies of novel bithiophene azo dyes functionalized with thiadiazole acceptor groups. Dyes Pigments 95:392–399.  https://doi.org/10.1016/j.dyepig.2012.05.014 CrossRefGoogle Scholar
  11. 11.
    Tathe AB, Gupta VD, Sekar N (2015) Synthesis and combined experimental and computational investigations on spectroscopic and photophysical properties of red emitting 3-styryl coumarins. Dyes Pigments 119:49–55.  https://doi.org/10.1016/j.dyepig.2015.03.023 CrossRefGoogle Scholar
  12. 12.
    Tathe AB, Sekar N (2016) Red emitting Coumarin—azo dyes : synthesis, characterization, linear and non-linear optical properties-experimental and computational approach. J Fluoresc 26:1279–1293.  https://doi.org/10.1007/s10895-016-1815-2 CrossRefPubMedGoogle Scholar
  13. 13.
    Chemate S, Sekar N (2016) Indole-based NLOphoric donor-π-acceptor Styryl dyes: synthesis, spectral properties and computational studies. J Fluoresc 26:2063–2077.  https://doi.org/10.1007/s10895-016-1901-5 CrossRefPubMedGoogle Scholar
  14. 14.
    Zhu M, Jiang L, Yuan M, Liu X, Ouyang C, Zheng H, Yin X, Zuo Z, Liu H, Li Y (2008) Efficient tuning nonlinear optical properties: synthesis and characterization of a series of novel poly (aryleneethynylene) s co-containing BODIPY. J Polym Sci Part A Polym Chem 46:7401–7410.  https://doi.org/10.1002/pola.23045 CrossRefGoogle Scholar
  15. 15.
    Ulrich G, Barsella A, Boeglin A, Niu S, Ziessel R (2014) BODIPY-bridged push-pull chromophores for nonlinear optical applications. ChemPhysChem 15:2693–2700.  https://doi.org/10.1002/cphc.201402123 CrossRefPubMedGoogle Scholar
  16. 16.
    Telore RD, Jadhav AG, Sekar N (2016) NLOphoric and solid state emissive BODIPY dyes containing N -phenylcarbazole core at meso position – synthesis, photophysical properties of and DFT studies. J Lumin 179:420–428.  https://doi.org/10.1016/j.jlumin.2016.07.035 CrossRefGoogle Scholar
  17. 17.
    Thakare SS, Sreenath MC, Chitrambalam S, Joe IH, Sekar N (2017) Non-linear optical study of BODIPY-benzimidazole conjugate by solvatochromic, Z-scan and theoretical methods. Opt Mater (Amst) 64:453–460.  https://doi.org/10.1016/j.optmat.2017.01.020 CrossRefGoogle Scholar
  18. 18.
    McGoverin CM, Walsh TJ, Gordon KG, Kay AJ, Woolhouse AD (2007) Predicting nonlinear optical properties in push–pull molecules based on methyl pyridinium donor and 3-cyano-5,5-dimethyl-2(5H)-furanylidene-propanedinitrile acceptor units using vibrational spectroscopy and density functional theory. Chem Phys Lett 443:298–303.  https://doi.org/10.1016/j.cplett.2007.06.068 CrossRefGoogle Scholar
  19. 19.
    Reish ME, Kay AJ, Teshome A, Asselberghs I, Clays KL, Gordon KC (2012) Testing computational models of Hyperpolarizability in a Merocyanine dye using spectroscopic and DFT methods. J Phys Chem A 116:5453–5463.  https://doi.org/10.1021/jp301455r CrossRefPubMedGoogle Scholar
  20. 20.
    Barnsley JE, Shillito GE, Larsen CB, Salm HV, Wang LE, Lucas NT (2016) Gordon, K/G.: benzo [c][1,2,5] thiadiazole donor−acceptor dyes: a synthetic, spectroscopic, and computational study. J Phys Chem A 120:1853–−1866.  https://doi.org/10.1021/acs.jpca.6b00447 CrossRefPubMedGoogle Scholar
  21. 21.
    Dreuw A, Head-Gordon M (2005) Single-reference ab initio methods for the calculation of excited states of large molecules. Chem Rev 105:4009–4037.  https://doi.org/10.1021/cr0505627 CrossRefPubMedGoogle Scholar
  22. 22.
    Andzelm J, Rawlett A, Dougherty J, Govind N, Baer R (2008) Performance of DFT methods in the calculation of optical spectra of chromophores. 2008 Proc. Dep. Def. High perform. Comput. Mod. Progr. Users Gr. Conf - Solving Hard Probl 235–240.  https://doi.org/10.1109/DoD.HPCMP.UGC.2008.80
  23. 23.
    Tozer, D.J., Amos, R.D., Handy, N.C., Roos, B.O., Serrano-ANDRES, L.: Does density functional theory contribute to the understanding of excited states of unsaturated organic compounds? Mol Phys 97, 859–868 (1999). doi: https://doi.org/10.1080/00268979909482888
  24. 24.
    Becke AD (1993) Density-functional thermochemistry. III. The role of exact exchange. J Chem Phys 98:5648–5652.  https://doi.org/10.1063/1.464913 CrossRefGoogle Scholar
  25. 25.
    Wu Q, Ayers PW, Yang W (2003) Density-functional theory calculations with correct long-range potentials. J Chem Phys 119:2978–2990.  https://doi.org/10.1063/1.1590631 CrossRefGoogle Scholar
  26. 26.
    Tozer DJ, Handy NC (1998) Improving virtual Kohn-sham orbitals and eigenvalues: application to excitation energies and static polarizabilities. J Chem Phys 109:10180–10189.  https://doi.org/10.1063/1.477711 CrossRefGoogle Scholar
  27. 27.
    Van Leeuwen R, Baerends EJ (1994) Exchange-correlation potential with correct asymptotic behavior. Phys Rev A 49:2421–2431.  https://doi.org/10.1103/PhysRevA.49.2421 CrossRefPubMedGoogle Scholar
  28. 28.
    Kirtman B, Lacivita V, Dovesi R, Reis H (2011) Electric field polarization in conventional density functional theory: from quasilinear to two-dimensional and three-dimensional extended systems. J Chem Phys 135(15401):154101.  https://doi.org/10.1063/1.3649945 CrossRefPubMedGoogle Scholar
  29. 29.
    Loboda O, Zales R, Avramopoulos A, Luis J, Kirtman B, Tagmatarchis N (2009) Linear and nonlinear optical properties of [ 60 ] fullerene derivatives. J Phys Chem A 113:1159–1170.  https://doi.org/10.1021/jp808234x CrossRefPubMedGoogle Scholar
  30. 30.
    Van Faassen M, De Boeij PL, Van Leeuwen R, Berger JA, Snijders JG (2003) Application of time-dependent current-density-functional theory to nonlocal exchange-correlation effects in polymers. J Chem Phys 118:1044–1053.  https://doi.org/10.1063/1.1529679 CrossRefGoogle Scholar
  31. 31.
    Champagne B, Perpète EA, Jacquemin D, van Gisbergen SJA, Baerends E-J, Soubra-Ghaoui C, Robins KA, Kirtman B (2000) Assessment of conventional density functional schemes for computing the dipole moment and (hyper) polarizabilities of push−pull π-conjugated systems . J Phys Chem A 104:4755–4763.  https://doi.org/10.1021/jp993839d CrossRefGoogle Scholar
  32. 32.
    Champagne B, Perpète EA, Van Gisbergen SJA, Baerends EJ, Snijders JG, Soubra-Ghaoui C, Robins KA, Kirtman B (1998) Assessment of conventional density functional schemes for computing the polarizabilities and hyperpolarizabilities of conjugated oligomers: an ab initio investigation of polyacetylene chains. J Chem Phys 109:10489–10498.  https://doi.org/10.1063/1.477731 CrossRefGoogle Scholar
  33. 33.
    Chakrabarti S, Ruud K (2009) Large two-photon absorption cross section: molecular tweezer as a new promising class of compounds for nonlinear optics. Phys Chem Chem Phys 11:2592–2596.  https://doi.org/10.1039/b822395e CrossRefPubMedGoogle Scholar
  34. 34.
    Ramakrishna G, Goodson T (2007) Excited-state deactivation of branched two-photon absorbing chromophores: a femtosecond transient absorption investigation. J Phys Chem A 111:993–1000.  https://doi.org/10.1021/jp064004n CrossRefPubMedGoogle Scholar
  35. 35.
    Kanis DR, Ratner MA, Marks TJ (1994) Design and construction of molecular assemblies with large second-order optical nonlinearities. Quantum chemical aspects. Chem Rev 94:195–242.  https://doi.org/10.1021/cr00025a007 CrossRefGoogle Scholar
  36. 36.
    Garza AJ, Osman OI, Wazzan NA, Khan SB, Asiri AM, Scuseria GE (2014) A computational study of the nonlinear optical properties of carbazole derivatives: theory refines experiment. Theor Chem Accounts 133(1–8).  https://doi.org/10.1007/s00214-014-1458-9
  37. 37.
    Jacquemin D, Perp̀te EA, Vydrov OA, Scuseria GE, Adamo C (2007) Assessment of long-range corrected functionals performance for n→ π* transitions in organic dyes. J Chem Phys 127(94102):094102.  https://doi.org/10.1063/1.2770700 CrossRefPubMedGoogle Scholar
  38. 38.
    Vydrov O a, Heyd J, Krukau AV, Scuseria GE (2006) Importance of short-range versus long-range Hartree-Fock exchange for the performance of hybrid density functionals. J Chem Phys 125(74106):074106.  https://doi.org/10.1063/1.2244560 CrossRefPubMedGoogle Scholar
  39. 39.
    Vydrov O a, Scuseria GE (2006) Assessment of a long-range corrected hybrid functional. J Chem Phys 125:234109.  https://doi.org/10.1063/1.2409292 CrossRefPubMedGoogle Scholar
  40. 40.
    Yanai T, Tew DP, Handy NC (2004) A new hybrid exchange – correlation functional using the. Chem Phys Lett 393:51–57.  https://doi.org/10.1016/j.cplett.2004.06.011 CrossRefGoogle Scholar
  41. 41.
    Iikura H, Tsuneda T, Yanai T, Hirao K (2001) A long-range correction scheme for generalized-gradient-approximation exchange functionals. J Chem Phys 115:3540–3544.  https://doi.org/10.1063/1.1383587 CrossRefGoogle Scholar
  42. 42.
    Savin A, Flad H-J (1995) Density functionals for the Yukawa electron-electron interaction. Int J Quantum Chem 56:327–332.  https://doi.org/10.1002/qua.560560417 CrossRefGoogle Scholar
  43. 43.
    Garza AJ, Scuseria GE, Khan SB, Asiri AM (2013) Assessment of long-range corrected functionals for the prediction of non-linear optical properties of organic materials. Chem Phys Lett 575:122–125.  https://doi.org/10.1016/j.cplett.2013.04.081 CrossRefGoogle Scholar
  44. 44.
    Nguyen KA, Rogers JE, Slagle JE, Day PN, Kannan R, Tan L-S, Fleitz PA, Pachter R (2006) Effects of conjugation in length and dimension on spectroscopic properties of Fluorene-based chromophores from experiment and theory. J Phys Chem A 110:13172–13182.  https://doi.org/10.1021/jp0642645 CrossRefPubMedGoogle Scholar
  45. 45.
    Jacquemin D, Perpète EA, Medved M, Scalmani G, Frisch MJ, Kobayashi R, Adamo C (2007) First hyperpolarizability of polymethineimine with long-range corrected functionals. J Chem Phys 126(1–5).  https://doi.org/10.1063/1.2741246
  46. 46.
    de Wergifosse M, Champagne B (2011) Electron correlation effects on the first hyperpolarizability of push–pull π-conjugated systems. J Chem Phys 134(74113).  https://doi.org/10.1063/1.3549814
  47. 47.
    Zaleśny R, Bulik IW, Bartkowiak W, Luis JM, Avramopoulos A, Papadopoulos MG, Krawczyk P (2010) Electronic and vibrational contributions to first hyperpolarizability of donor-acceptor-substituted azobenzene. J Chem Phys 133:244308.  https://doi.org/10.1063/1.3516209 CrossRefPubMedGoogle Scholar
  48. 48.
    Jacquemin D, Perpète EA, Scuseria GE, Ciofini I, Adamo C (2008) TD-DFT performance for the visible absorption spectra of organic dyes: conventional versus long-range hybrids. J Chem Theory Comput 4:123–135.  https://doi.org/10.1021/ct700187z CrossRefPubMedGoogle Scholar
  49. 49.
    Perpète EA, Jacquemin D, Adamo C, Scuseria GE (2008) Revisiting the nonlinear optical properties of polybutatriene and polydiacetylene with density functional theory. Chem Phys Lett 456:101–104.  https://doi.org/10.1016/j.cplett.2008.02.086 CrossRefGoogle Scholar
  50. 50.
    Jacquemin D, Perpète EA, Scuseria GE, Ciofini I, Adamo C (2008) Extensive TD-DFT investigation of the first electronic transition in substituted azobenzenes. Chem Phys Lett 465:226–229.  https://doi.org/10.1016/j.cplett.2008.09.071 CrossRefGoogle Scholar
  51. 51.
    Song JW, Watson MA, Sekino H, Hirao K (2008) Nonlinear optical property calculations of polyynes with long-range corrected hybrid exchange-correlation functionals. J Chem Phys 129(24117).  https://doi.org/10.1063/1.2936830
  52. 52.
    Kamiya M, Sekino H, Tsuneda T, Hirao K (2005) Nonlinear optical property calculations by the long-range-corrected coupled-perturbed Kohn-sham method. J Chem Phys 122:234111.  https://doi.org/10.1063/1.1935514 CrossRefPubMedGoogle Scholar
  53. 53.
    Tawada Y, Tsuneda T, Yanagisawa S, Yanai T, Hirao K, Tawada Y, Tsuneda T, Yanagisawa S (2004) A long-range-corrected time-dependent density functional theory. J Chern Phys 120:8425.  https://doi.org/10.1063/1.1688752 CrossRefGoogle Scholar
  54. 54.
    Nakano M, Champagne B (2016) Nonlinear optical properties in open-shell molecular systems. WIREs Comput Mol Sci 6:198–210.  https://doi.org/10.1002/wcms.1242 CrossRefGoogle Scholar
  55. 55.
    Smith MB, Michl J (2010) Singlet fission. Chem Rev 110:6891–6936.  https://doi.org/10.1021/cr1002613 CrossRefPubMedGoogle Scholar
  56. 56.
    Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Scalmani G, Barone V, Mennucci B, Petersson GA, Nakatsuji HCM, Li X, Hratchian HP, Izmaylov AF, Bloino J, Zheng G, Sonnenberg JL, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Vreven T, Montgomery JA, Jr; Peralta JE, Ogliaro F, Bearpark M, Heyd JJ, Brothers E, Kudin KN, Staroverov VN, Kobayashi R, Normand J, Raghavachari K, Rendell A, Burant JC, Iyengar SS, Tomasi J, Cossi M, Rega N, Millam N J, Klene M, Knox J E, Cross JBB V, Adamo C, Jaramillo J, Gomperts R, Stratmann RE, Yazyev O, Austin AJ, Cammi R, Pomelli C, Ochterski JW, Martin RL, Morokuma K, Zakrzewski VG, Voth GA, Salvador P, Dannenberg J J, Dapprich S, Daniels AD, Farkas O, Foresman JB, Ortiz JV, Cioslowski, J, Fox DJ: Gaussian 09, Revision C01, (2010)Google Scholar
  57. 57.
    Dooley R, Milfeld K, Guiang C, Pamidighantam S, Allen G (2005) Computational chemistry grid production cyberinfrastructure for computational chemistry, proc. 13th Annu. Mardi Gras Conf. Bat. Rouge, LA 83Google Scholar
  58. 58.
    Dooley, R., Milfeld, K., Guiang, C., Pamidighantam, S., G. Allen (2005) Cluster computing through an application-oriented computational chemistry grid, proc. 2005 Linux Clust. HPC RevolutGoogle Scholar
  59. 59.
    Dooley R, Milfeld K, Guiang C, Pamidighantam S, Allen G (2006) From proposal to production: lessons learned developing the computational chemistry grid cyberinfrastructure. J Grid Comput 4:195–208.  https://doi.org/10.1007/s10723-006-9043-7 CrossRefGoogle Scholar
  60. 60.
    Lee C, Yang W, Parr RG (1988) Development of the Colle-Salvetti correlation-energy formula into a functional of the electron density. Phys Rev B 37:785–789.  https://doi.org/10.1103/PhysRevB.37.785 CrossRefGoogle Scholar
  61. 61.
    Petersson GA, Bennett A, Tensfeldt TG, Allaham MA, Shirley WA, Petersson GA, Bennett A, Tensfeldt TG, Ai-laham MA, Shirley WA (1988) A complete basis set model chemistry . I . The total energies of closedshell atoms and hydrides of the firstrow elements A complete basis set model chemistry. I. The total energies of closed-shell atoms and hydrides of the first-row elements. J Chern Phys 89:2193.  https://doi.org/10.1063/1.455064 CrossRefGoogle Scholar
  62. 62.
    Zhao Y, Truhlar DG (2008) The M06 suite of density functionals for main group thermochemistry , thermochemical kinetics , noncovalent interactions , excited states , and transition elements : two new functionals and systematic testing of four M06-class functionals and 12 other fun. Theor Chem Accounts 120:215–241.  https://doi.org/10.1007/s00214-007-0310-x CrossRefGoogle Scholar
  63. 63.
    Runge E, Gross EKU (1984) Density-functional theory for time-dependent systems. Phys Rev Lett 52:997–1000.  https://doi.org/10.1103/PhysRevLett.52.997 CrossRefGoogle Scholar
  64. 64.
    Tomasi J, Mennucci B, Cammi R (2005) Quantum mechanical continuum solvation models. Chem Rev 105:2999–3093.  https://doi.org/10.1021/cr9904009 CrossRefPubMedGoogle Scholar
  65. 65.
    Vidya S, Ravikumar C, Hubert Joe I, Kumaradhas P, Devipriya B, Raju K (2011) Vibrational spectra and structural studies of nonlinear optical crystal ammonium D, L-tartrate: a density functional theoretical approach. J Raman Spectrosc 42:676–684.  https://doi.org/10.1002/jrs.2743 CrossRefGoogle Scholar
  66. 66.
    Geerlings P, De Proft F, Langenaeker W (2003) Conceptual density functional theory. Chem Rev 103:1793–1874.  https://doi.org/10.1021/cr990029p
  67. 67.
    Hehre WJ, Ditchfield R, Pople J a (1972) Self—consistent molecular orbital methods. XII. Further extensions of Gaussian—type basis sets for use in molecular orbital studies of organic molecules. J Chem Phys 56:2257–2261.  https://doi.org/10.1063/1.1677527 CrossRefGoogle Scholar
  68. 68.
    Avci D, Tamer Ö, Atalay Y (2016) Solvatochromic effect on UV-vis absorption and fluorescence emission spectra, second- and third-order nonlinear optical properties of dicyanovinyl-substituted thienylpyrroles: DFT and TDDFT study. J Mol Liq 220:495–503.  https://doi.org/10.1016/j.molliq.2016.05.023 CrossRefGoogle Scholar
  69. 69.
    Johnson LE, Dalton LR, Robinson BH (2014) Optimizing calculations of electronic excitations and relative hyperpolarizabilities of electrooptic chromophores. Acc Chem Res 47:3258–3265.  https://doi.org/10.1021/ar5000727 CrossRefPubMedGoogle Scholar
  70. 70.
    Castet F, Rodriguez V, Pozzo J-L, Ducasse L, Plaquet A, Champagne B (2013) Design and characterization of molecular nonlinear optical switches. Acc Chem Res 46:2656–2665.  https://doi.org/10.1021/ar4000955 CrossRefPubMedGoogle Scholar
  71. 71.
    Swart M, Snijders JG, Th P, Duijnen V (2004) Polarizabilities of amino acid residues. J Comput methods Sci Eng 4:419–425Google Scholar
  72. 72.
    Solomon RV, Veerapandian P, Vedha SA, Venuvanalingam P (2012) Tuning nonlinear optical and optoelectronic properties of vinyl coupled triazene chromophores: a density functional theory and time-dependent density functional theory investigation. J Phys Chem A 116:4667–4677.  https://doi.org/10.1021/jp302276w CrossRefPubMedGoogle Scholar
  73. 73.
    Vargas J, Springborg M, Kirtman B (2014) Electronic responses of long chains to electrostatic fields: Hartree-Fock vs. density-functional theory: a model study. J Chem Phys 140:054117.  https://doi.org/10.1063/1.4864038 CrossRefPubMedGoogle Scholar
  74. 74.
    Thanthiriwatte KS, Nalin de Silva K (2002) Non-linear optical properties of novel fluorenyl derivatives—ab initio quantum chemical calculations. J Mol Struct THEOCHEM 617:169–175.  https://doi.org/10.1016/S0166-1280(02)00419-0 CrossRefGoogle Scholar
  75. 75.
    Asiri AM, Khan SA, Al-Amoudi MS, Alamry KA (2012) Synthesis, characterization, absorbance, fluorescence and non linear optical properties of some donor acceptor chromophores. Bull Kor Chem Soc 33:1900–1906.  https://doi.org/10.5012/bkcs.2012.33.6.1900 CrossRefGoogle Scholar
  76. 76.
    Tathe AB, Sekar N (2016) Red emitting NLOphoric 3-styryl coumarins : experimental and computational studies. Opt. Mater. (Amst). 51:121–127.  https://doi.org/10.1016/j.optmat.2015.11.031 CrossRefGoogle Scholar
  77. 77.
    Arivazhagan M, Kavitha R, Subhasini VP (2014) Spectrochimica Acta part a : molecular and biomolecular spectroscopy conformational analysis , UV – VIS , MESP , NLO and NMR studies. Spectrochim ACTA PART A Mol Biomol Spectrosc 128:701–710.  https://doi.org/10.1016/j.saa.2014.02.102 CrossRefGoogle Scholar
  78. 78.
    Chaitanya K, Ju XH, Heron BM, Gabbutt CD (2013) Vibrational spectra and static vibrational contribution to first hyperpolarizability of naphthopyrans—a combined experimental and DFT study. Vib Spectrosc 69:65–83.  https://doi.org/10.1016/j.vibspec.2013.09.010 CrossRefGoogle Scholar
  79. 79.
    Robert WG, Zale R, Lipkowski P, Bartkowiak W, Reis H, Papadopoulos MG, Luis JM, Kirtman B (2011) Electronic structure , bonding , spectra , and linear and nonlinear electric properties of Ti @ C 28. J Phys Chem A 115:10370–10381.  https://doi.org/10.1021/jp206331n CrossRefGoogle Scholar
  80. 80.
    Zaleśny R, Wójcik G, Mossakowska I, Bartkowiak W, Avramopoulos A, Papadopoulos MG (2009) Static electronic and vibrational first hyperpolarizability of meta-dinitrobenzene as studied by quantum chemical calculations. J Mol Struct THEOCHEM 907:46–50.  https://doi.org/10.1016/j.theochem.2009.04.011 CrossRefGoogle Scholar
  81. 81.
    Kuzyk MG (2006) Fundamental limits of all nonlinear-optical phenomena that are representable by a second-order nonlinear susceptibility. J Chem Phys 125:1–11.  https://doi.org/10.1063/1.2358973 CrossRefGoogle Scholar
  82. 82.
    Pérez-Moreno J, Zhao Y, Clays K, Kuzyk MG (2007) Modulated conjugation as a means for attaining a record high intrinsic hyperpolarizability. Opt Lett 32:59–61.  https://doi.org/10.1364/OL.32.000059 CrossRefPubMedGoogle Scholar
  83. 83.
    Kuzyk MG (2000) Fundamental limits on third-order molecular susceptibilities. Opt Lett 25:1183–1185.  https://doi.org/10.1364/OL.25.001183 CrossRefPubMedGoogle Scholar
  84. 84.
    Kuzyk MG (2000) Physical limits on electronic nonlinear molecular susceptibilities. Phys Rev Lett 85:1218–1221.  https://doi.org/10.1103/PhysRevLett.85.1218 CrossRefPubMedGoogle Scholar
  85. 85.
    Kogej T, Beljonne D, Meyers F, Perry JW, Marder SR, Brédas JL (1998) Mechanisms for enhancement of two-photon absorption in donor–acceptor conjugated chromophores. Chem Phys Lett 298:1–6.  https://doi.org/10.1016/S0009-2614(98)01196-8 CrossRefGoogle Scholar
  86. 86.
    Drobizhev M, Meng F, Rebane A, Stepanenko Y, Nickel E, Spangler CW (2006) Strong two-photon absorption in new asymmetrically substituted porphyrins: interference between charge-transfer and intermediate-resonance pathways. J Phys Chem B 110:9802–9814.  https://doi.org/10.1021/jp0551770 CrossRefPubMedGoogle Scholar
  87. 87.
    Rodrigues CAB, Mariz IFA, Maçôas EMS, Afonso CAM, Martinho JMG (2012) Two-photon absorption properties of push–pull oxazolones derivatives. Dyes Pigments 95:713–722.  https://doi.org/10.1016/j.dyepig.2012.06.005 CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of Dyestuff TechnologyInstitute of Chemical TechnologyMumbaiIndia
  2. 2.Computational Chemistry Group, Department of Chemistry, Faculty of ScienceUniversity of MauritiusRéduitMauritius
  3. 3.Department of Applied ChemistryUniversity of JohannesburgJohannesburgSouth Africa
  4. 4.Department of Pharmaceutical Chemistry, College of PharmacyKing Saud UniversityRiyadhSaudi Arabia

Personalised recommendations