A Fluorescent Turn-On Carbazole-Rhodanine Based Sensor for Detection of Ag+ Ions and Application in Ag+ Ions Imaging in Cancer Cells

  • Denzil Britto Christopher Leslee
  • Sekar KaruppannanEmail author
  • Muthu Vengaian Karmegam
  • Sivaraman Gandhi
  • Singaravadivel Subramanian


Carbazole – Rhodanine conjugate is an effective fluorescent host for silver ions through fluorometric transformation from green to red color with a hyperchromic emission. An intramolecular charge transfer process derived from carbazole towards rhodanine favors interaction of thiocarbonyl S and carboxylic acid O of the rhodanine moiety towards Ag+ ion. Carbazole - rhodanine dyad accomplishes the lowest detection limit of 12.8 × 10−9 M and high quantum efficiency. A fluorescence reversibility of the probe with I ion surges reutilization of sensor molecule as an Ag+ ion probe with minimal loss in the fluorescent efficiency. This fluorescent ligand is a biocompatible probe and is also a proficient candidate for fluorescent imaging of Ag+ ion in live cells.


Fluorescent sensor Silver ion Carbazole Rhodanine Internal charge transfer Cell imaging 



C. Denzil Britto is thankful to DST-SERB, New Delhi, India, for project fellowship and K. Sekar is grateful to DST-SERB, New Delhi, India, for financial support. (Grant No: SB/FT/CS-062/2013)

Supplementary material

10895_2018_2312_MOESM1_ESM.docx (5.1 mb)
ESM 1 (DOCX 5.13 mb)


  1. 1.
    Drake PL, Hazelwood KJ (2005) Exposure-related health effects of silver and silver compounds: a review. Ann Occup Hyg 49(7):575–585PubMedGoogle Scholar
  2. 2.
    Modak SM, Sampath L, Fox CL Jr (1988) Combined topical use of silver sulfadiazine and antibiotics as a possible solution to bacterial resistance in burn wounds. J Burn Care Rehabil 9:359–363CrossRefGoogle Scholar
  3. 3.
    Gulbranson SH, Hud JA, Hansen RC (2000) Argyria following the use of dietary supplements containing colloidal silver protein. Cutis 66:373–374PubMedGoogle Scholar
  4. 4.
    Monteiro DR, Gorup LF, Takamiya AS, Ruvollo-Filho AC, de Camargo ER, Barbosa DB (2009) The growing importance of materials that prevent microbial adhesion: antimicrobial effect of medical devices containing silver. Int J Antimicrob Agents 34:103–110CrossRefGoogle Scholar
  5. 5.
    Hogstrand C, Wood CM (1998) Toward a better understanding of the bioavailability, physiology, and toxicity of silver in fish: implications for water quality criteria. Environ Toxicol Chem 17(4):547–561CrossRefGoogle Scholar
  6. 6.
    Yu C, Zhang J, Ding M, Chen L (2012) Silver(I) ion detection in aqueous media based on “off-on” fluorescent probe. Anal Methods 4:342–344CrossRefGoogle Scholar
  7. 7.
    Liu L, Zhang G, Xiang J, Zhang D, Zhu D (2008) Fluorescence “turn on” Chemosensors for Ag+ and Hg2+ based on Tetraphenylethylene motif featuring adenine and thymine moieties. Org Lett 10(20):4581–4584CrossRefGoogle Scholar
  8. 8.
    Huang C, Ren A, Feng C, Yang N (2010) Two-photon fluorescent probe for silver ion derived from twin-cyano-stilbene with large two-photon absorption cross section. Sensors Actuators B Chem 151:236–242CrossRefGoogle Scholar
  9. 9.
    Zhang B, Sun J, Bi C, Yin G, Pu L, Shi Y, Sheng L (2011) A highly selective ratiometric fluorescent chemosensor for Ag+ based on a rhodanineacetic acid-pyrene derivative. New J Chem 35:849–853CrossRefGoogle Scholar
  10. 10.
    Yan H, Su H, Tian D, Miao F, Li H (2011) Synthesis of triazolo-thiadiazole fluorescent organic nanoparticles as primary sensor toward Ag+ and the complex of Ag+ as secondary sensor toward cysteine. Sensors Actuators B Chem 160:656–661CrossRefGoogle Scholar
  11. 11.
    Ye J-H, Duan L, Yan C, Zhang W, He W (2012) A new ratiometric Ag+ fluorescent sensor based on aggregation-induced emission. Tetrahedron Lett 53:593–596CrossRefGoogle Scholar
  12. 12.
    Zhang X-B, Hana Z-X, Fang Z-H, Shen G-L, Ru-Qin Y (2006) 5,10,15-Tris(pentafluorophenyl)corrole as highly selective neutral carrier for a silver ion-sensitive electrode. Anal Chim Acta 562:210–215CrossRefGoogle Scholar
  13. 13.
    Mahajan RK, Soon P, Mahajan MP, Singh P (2004) 2,6-Bis-methylsulfanyl-[1,3,5]thiadiazine-4-thione as a Ag+-selective Ionophore. Anal Sci 20:1423–1426CrossRefGoogle Scholar
  14. 14.
    Foldbjerg R, Dang DA, Autrup H (2011) Cytotoxicity and genotoxicity of silver nanoparticles in the human lung cancer cell line, A549. Arch Toxicol 85:743–750CrossRefGoogle Scholar
  15. 15.
    Kaegi R, Sinnet B, Zuleeg S, Hagendorfer H, Mueller E, Vonbank R, Boller M, Burkhardt M (2010) Release of silver nanoparticles from outdoor facades, Environmental Pollution. Environ Pollut 158:2900–2905CrossRefGoogle Scholar
  16. 16.
    Ahamed M, Al Salhi MS, Siddiqui MKJ (2010) Silver nanoparticle applications and human health. Clin Chim Acta 411:1841–1848CrossRefGoogle Scholar
  17. 17.
    Di Vincenzo GD, Giordano CJ, Schriever LS (1985) Biologic monitoring of workers exposed to silver. Int Arch Occup Environ Health 56:207–215CrossRefGoogle Scholar
  18. 18.
    Drake PL, Marcy AD, Ashley K (2006) Evaluation of a standardized method for determining soluble silver in workplace air samples. J Environ Monit 8:134–139CrossRefGoogle Scholar
  19. 19.
    Velmurugan K, Raman A, Easwaramoorthi S, Nandhakumar R (2014) Pyrene pyridine-conjugate as Ag selective fluorescent chemosensor. RSC Adv 4:35284–35289CrossRefGoogle Scholar
  20. 20.
    Kandaz M, Guney O, Senkal FB (2009) Fluorescent chemosensor for Ag(I) based on amplified fluorescence quenching of a new phthalocyanine bearing derivative of benzofuran. Polyhedron 28:3110–3114CrossRefGoogle Scholar
  21. 21.
    Zheng H, Yan M, Fan X-X, Sun D, Yang S-Y, Yang L-J, Li J-D, Jiang Y-B (2012) A heptamethine cyanine-based colorimetric and ratiometric fluorescent chemosensor for the selective detection of Ag+ in an aqueous medium. Chem Commun 48:2243–2245CrossRefGoogle Scholar
  22. 22.
    Wang H-H, Xue L, Qian Y-Y, Jiang H (2010) Novel Ratiometric fluorescent sensor for silver ions. Org Lett 12(2):292–295CrossRefGoogle Scholar
  23. 23.
    Wang F, Nandhakumar R, Moon JH, Kim KM, Lee JY, Yoon J (2011) Ratiometric fluorescent Chemosensor for silver ion at physiological pH. Inorg Chem 50:2240–2245CrossRefGoogle Scholar
  24. 24.
    Li C-Y, Xu F, Li Y-F (2010) A fluorescent chemosensor for silver ions based on porphyrin compound with high selectivity. Spectrochim Acta A 76:197–201CrossRefGoogle Scholar
  25. 25.
    Asiri AM, Osman OI, Al-Thaqafy SH, Khan SA (2017) Optical properties and fluorescence quenching of carbazole containing (D–π–a) push–pull chromophores by silver nanoparticles: a detailed insight via an experimental and theoretical approach. RSC Adv 7:8402–8414CrossRefGoogle Scholar
  26. 26.
    Dang F, Lei K, Liu W (2008) A new highly selective fluorescent silver probe. J Fluoresc 18:149–153CrossRefGoogle Scholar
  27. 27.
    Zhang JF, Zhou Y, Yoon J, Kim JS (2011) Recent progress in fluorescent and colorimetric chemosensors for detection of precious metal ions (silver, gold and platinum ions). Chem Soc Rev 40:3416–3429CrossRefGoogle Scholar
  28. 28.
    Khatua S, Schmittel M (2013) A single molecular light-up sensor for quantification of Hg2+ and Ag+ in aqueous medium: high selectivity toward Hg2+ over Ag+ in a mixture. Org Lett 15(17):4422–4425CrossRefGoogle Scholar
  29. 29.
    Hatai J, Pal S, Bandyopadhyay S (2012) Fluorescent detection of silver ions in water with organic nano-aggregates. RSC Adv 2:10941–10947CrossRefGoogle Scholar
  30. 30.
    Iyoshi S, Taki M, Yamamoto Y (2008) Rosamine-based fluorescent Chemosensor for selective detection of silver(I) in an aqueous solution. Inorg Chem 47:3946–3948CrossRefGoogle Scholar
  31. 31.
    Wang H, Xue L, Jiang H (2011) Ratiometric fluorescent sensor for silver ion and its resultant complex for iodide anion in aqueous solution. Org Lett 13(15):3844–3847CrossRefGoogle Scholar
  32. 32.
    Jang S, Thirupathi P, Neupane LN, Seong J, Lee H, Lee WI, Lee K-H (2012) Highly sensitive ratiometric fluorescent chemosensor for silver ion and silver nanoparticles in aqueous solution. Org Lett 14(18):4744–4749CrossRefGoogle Scholar
  33. 33.
    Liu C, Huang S, Yao H, He S, Lu Y, Zhao L, Zeng X (2014) Preparation of fluorescein-based chemosensors and their sensing behaviors toward silver ions. RSC Adv 4:16109–16114CrossRefGoogle Scholar
  34. 34.
    Huang S, He S, Lu Y, Wei F, Zeng X, Zhao L (2011) Highly sensitive and selective fluorescent chemosensor for Ag+ based on a coumarin–Se2N chelating conjugate. Chem Commun 47:2408–2410CrossRefGoogle Scholar
  35. 35.
    Shi D-T, Wei X-L, Sheng Y, Zang Y, He X-P, Xie J, Liu G, Tang Y, Li J, Chen G-R (2014) Substitution pattern reverses the fluorescence response of Coumarin Glycoligands upon coordination with silver (I). Sci Rep 4:4252CrossRefGoogle Scholar
  36. 36.
    Liu L, Zhang D, Zhang G, Xiang J, Zhu D (2008) Highly selective Ratiometric fluorescence determination of Ag+ based on a molecular motif with one pyrene and two adenine moieties. Org Lett 10(11):2271–2274CrossRefGoogle Scholar
  37. 37.
    Jang S, Thirupathi P, Neupane LN, Seong J, Lee H, In Lee W, Lee K-H (2012) Highly sensitive Ratiometric fluorescent Chemosensor for silver ion and silver nanoparticles in aqueous solution. Org Lett 14(18):4746–4749CrossRefGoogle Scholar
  38. 38.
    Yang R-H, Chan W-H, Lee AWM, Xia P-F, Zhang H-K, Li K’A (2003) A Ratiometric fluorescent sensor for AgI with high selectivity and sensitivity. J Am Chem Soc 125:2884–2885CrossRefGoogle Scholar
  39. 39.
    Chatterjee A, Santra M, Won N, Kim S, Kim JK, Kim SB, Ahn KH (2009) Selective Fluorogenic and chromogenic probe for detection of silver ions and silver nanoparticles in aqueous media. J Am Chem Soc 131:2040–2041CrossRefGoogle Scholar
  40. 40.
    Li C-Y, Kong X-F, Li Y-F, Zou C-X, Liu D, Zhu W-G (2013) Ratiometric and colorimetric fluorescent chemosensor for Ag+ based on tricarbocyanine. Dyes Pigments 99:903–907CrossRefGoogle Scholar
  41. 41.
    Wu TY, Tsao MH, Chen FL, Su SG, Chang CW, Wang HP, Lin YC, Sun IW (2010) Synthesis and characterization of three organic dyes with various donors and Rhodanine ring acceptor for use in dye-sensitized solar cells. J Iran Chem Soc 7(3):707–720CrossRefGoogle Scholar
  42. 42.
    Sk B, Khodia S, Patra A (2018) T and V-shaped donor–acceptor–donor molecules involving pyridoquinoxaline: large stokes shift, environment-sensitive tunable emission and temperature-induced fluorochromism. Chem Commun 54:1786–1789CrossRefGoogle Scholar
  43. 43.
    Balsukuri N, Guptam I (2017) Singlet-singlet energy transfer in carbazole-porphyrin dyads and triads. Dyes Pigments 144:223–233CrossRefGoogle Scholar
  44. 44.
    Dumat B, Bordeau G, Aranda AI, Mahuteau-Betzer F, El Harfouch Y, Metgé G, Charra F, Fiorini-Debuisschert C, Teulade-Fichou M-P (2012) Vinyl-triphenylamine dyes, a new family of switchable fluorescent probes for targeted two-photon cellular imaging: from DNA to protein labelling. Org Biomol Chem 10:6054–6061CrossRefGoogle Scholar
  45. 45.
    Gong W-L, Zhong F, Aldred MP, Fu Q, Chen T, Huang D-K, Shen Y, Qiao X-F, Ma D, Zhu M-Q (2012) Carbazole oligomers revisited: new additions at the carbazole 1- and 8-positions. RSC Adv 2:10821–10828CrossRefGoogle Scholar
  46. 46.
    Mingming H, Liu Y, Yi C, Song W, Gao L, Haichuan M, Huangd J, Jianhua S (2017) Highly efficient triazine/carbazole-based host material for green phosphorescent organic light-emitting diodes with low efficiency roll-off. RSC Adv 7:7287–7292CrossRefGoogle Scholar
  47. 47.
    Stoeck U, Senkovska I, Bon V, Krause S, Kaskel S (2015) Assembly of metal–organic polyhedra into highly porous frameworks for ethene delivery. Chem Commun 51:1046–1049CrossRefGoogle Scholar
  48. 48.
    Głuszyñska A (2015) Biological potential of carbazole derivative. Eur J Med Chem 94:405–426CrossRefGoogle Scholar
  49. 49.
    Denzil Britto C, Muthu Vengaian K, Sekar K, Sivaraman G, Singaravadivel S (2017) Carbazole-azine based fluorescence ‘off–on’ sensor for selective detection of Cu2+ and its live cell imaging. Luminescence 32(7):1354–1360CrossRefGoogle Scholar
  50. 50.
    Fan L, Gao S-Q, Li Z-B, Niu W-F, Zhang W-J, Shuang S-M, Dong C (2015) An indole-carbazole-based ratiometric emission pH fluorescent probe for imaging extreme acidity. Sensors Actuators B Chem 221:1069–1076CrossRefGoogle Scholar
  51. 51.
    Feng Y, Li D, Wang Q, Wang S, Meng X, Shao Z, Zhu M, Wang X (2016) A carbazole-based mitochondria-targeted two-photon fluorescent probe for gold ions and its application in living cell imaging. Sensors Actuators B Chem 225:572–578CrossRefGoogle Scholar
  52. 52.
    Goswami S, Paul S, Manna A (2013) Carbazole based hemicyanine dye for both “naked eye” and ‘NIR’ fluorescence detection of CN in aqueous solution: from molecules to low cost devices (TLC plate sticks). Dalton Trans 42:10682–10686CrossRefGoogle Scholar
  53. 53.
    Kala K, Manoj N (2016) A carbazole based “turn on” fluorescent sensor for selective detection of Hg2+ in an aqueous medium. RSC Adv 6:22615–22619CrossRefGoogle Scholar
  54. 54.
    Kaur M, Ahn Y-H, Choi K, Cho MJ, Choi DH (2015) A bifunctional colorimetric fluorescent probe for Hg2+ and Cu2+ based on a carbazole–pyrimidine conjugate: chromogenic and fluorogenic recognition on TLC, silica-gel and filter paper. Org Biomol Chem 13:7149–7153CrossRefGoogle Scholar
  55. 55.
    Li D, Sun X, Huang J, Wang Q, Feng Y, Chen M, Meng X, Zhu M, Wang X (2016) A carbazole-based “turn-on” two-photon fluorescent probe for biological Cu2+ detection vis Cu2+-promoted hydrolysis. Dyes Pigments 125:185–191CrossRefGoogle Scholar
  56. 56.
    Sharma S, Pradeep CP, Dhir A (2015) Dansyl-carbazole AIEE material for selective recognition of thiourea derivatives. New J Chem 39:1822–1826CrossRefGoogle Scholar
  57. 57.
    Xu Q-c, Wang X-f, Xing G-w, Zhang Y (2013) Carbazole substituted 2-aminobenzamide compounds: synthesis, fluorescence ON–OFF–ON sensing of Zn(II) and PPi ions, assay for alkaline phosphatase, and computational study. RSC Adv 3:15834–15841CrossRefGoogle Scholar
  58. 58.
    Zhang J, Zhang L, Wei Y, Chao J, Wang S, Shuang S, Cai Z, Dong C (2013) A selective carbazole-based fluorescent probe for chromium(III). Anal Methods 5:5549–5554CrossRefGoogle Scholar
  59. 59.
    El-Zawawy FM, El-Shahat MF, Mohamed AA, Zaki MTM (1995) Spectrophotometric determination of silver and gold with 5-(2,4-dihydroxybenzylidene)rhodanine and cationic surfactants. Analyst 120:549–554CrossRefGoogle Scholar
  60. 60.
    Godoy RE, Perez AG (1986) Spectrophotometric determination of trace amounts of silver with 5-[4-(2-methyl-3-hydroxy-5-hydroxymethyl)pyridylene]rhodanine. Analyst 111:1297–1299CrossRefGoogle Scholar
  61. 61.
    Borissova R, Koeva M, Topalova E (1975) Prediction of conditions for use of spectrophotometric reagents: p-dimethyl amino benzilidene rhodanine as a spectrophotometric reagent for silver and palladium. Talanta 22:791–796CrossRefGoogle Scholar
  62. 62.
    Song J, Kong H, Jang J (2011) Adsorption of heavy metal ions from aqueous solution by polyrhodanine-encapsulated magnetic nanoparticles. J Colloid Interface Sci 359:505–511CrossRefGoogle Scholar
  63. 63.
    Jabeen S, Dines TJ, Withnall R, Leharne SA, Chowdhry BZ (2009) Surface-enhanced Raman scattering studies of rhodanines: evidence for substrate surface-induced dimerization. Phys Chem Chem Phys 11:7476–7483CrossRefGoogle Scholar
  64. 64.
    Moers FG, Steggerda JJ (1968) Copper complexes of rhodanine and its 3-alkyl derivatives. J Inorg Nucl Chem 30:3217–3222CrossRefGoogle Scholar
  65. 65.
    Sandell EB, Neumayer JJ (1951) Photometric determination of traces of silver. Anal Chem 23(12):1863–1865CrossRefGoogle Scholar
  66. 66.
    Ostrauskaite J, Voska V, Antulis J, Gaidelis V, Jankauskas V, Grazulevicius JV (2002) High hole mobilities in carbazole-based glass-forming hydrazones. J Mater Chem 12:3469–3474CrossRefGoogle Scholar
  67. 67.
    Meyer T, Ogermann D, Pankrath A, Kleinermanns K, Muller TJJ (2012) Phenothiazinyl Rhodanylidene Merocyanines for dye-sensitized solar cells. J Org Chem 77:3704–3715CrossRefGoogle Scholar
  68. 68.
    Conners KA (1987) Binding constants - the measurement of molecular complex stability. John Wiley & Sons, New YorkGoogle Scholar
  69. 69.
    Shortreed M, Kopelman R, Kuhn M, Hoyland B (1996) Fluorescent fiber-optic calcium sensor for physiological measurements. Anal Chem 68:1414–1418CrossRefGoogle Scholar
  70. 70.
    Helm DV, Lessor AE, Merritt LLJ (1962) The crystal structure of rhodanine C3H3ONS2. Acta Cryst 15:1227–1232CrossRefGoogle Scholar
  71. 71.
    Marzec KM, Gawel B, Lasocha W, Proniewicz LM, Malek K (2010) Interaction between rhodanine and silver species on a nanocolloidal surface and in the solid state. J Raman Spectrosc 41:543–552CrossRefGoogle Scholar
  72. 72.
    Stephen WI, Townshend A (1965) The reaction of silver(I) ions with organic reagents containing the HN-C=S grouping. Part I. Rhodanine and related compounds. J Chem Soc 0:3738–3746CrossRefGoogle Scholar
  73. 73.
    Tejchman W, Skorska-Stania A, Zesławska E (2016) The Crystal Structures of Three Rhodanine-3-Carboxylic Acids. J Chem Crystallogr 46(4):181–187CrossRefGoogle Scholar
  74. 74.
    Walker LA, Folting K, Merritt LL (1969) The crystal structure of 2-thiohydantoin, C3H4ON2S. Acta Cryst B25:88–93CrossRefGoogle Scholar
  75. 75.
    Risch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Scalmani G, Barone V, Mennucci B, Petersson GA, Nakatsuji H, Caricato M, Li X, Hratchian HP, Izmaylov AF, Bloino J, Zheng G, Sonnenberg JL, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Vreven T, Montgomery JA Jr, Peralta JE, Ogliaro F, Bearpark M, Heyd JJ, Brothers E, Kudin KN, Staroverov VN, Kobayashi R, Normand J, Raghavachari K, Rendell A, Burant JC, Iyengar SS, Tomasi J, Cossi M, Rega N, Millam JM, Klene M, Knox JE, Cross JB, Bakken V, Adamo C, Jaramillo J, Gomperts R, Stratmann RE, Yazyev O, Austin AJ, Cammi R, Pomelli C, Ochterski JW, Martin RL, Morokuma K, Zakrzewski VG, Voth GA, Salvador P, Dannenberg JJ, Dapprich S, Daniels AD, Farkas O, Foresman JB, Ortiz JV, Cioslowski J, Fox DJ (2009) Gaussian 09, Revision A.02. Gaussian, Inc., WallingfordGoogle Scholar
  76. 76.
    Velmurugan K, Thamilselvan A, Antony R, Kannan VR, Tang L, Nandha kumar R (2017) Imidazoloquinoline bearing thiol probe as fluorescent electrochemical sensing of ag and relay recognition of proline. J Photochem Photobiol A Chem 333:130–141CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of ChemistryAnna University – University College of EngineeringDindigulIndia
  2. 2.Institute for stem cell biology and regenerative medicineBangaloreIndia
  3. 3.Department of ChemistrySSM Institute of Engineering and TechnologyDindigulIndia

Personalised recommendations