Advertisement

Journal of Fluorescence

, Volume 28, Issue 6, pp 1333–1340 | Cite as

Linear and Multi-Photon Fluorescence of Thiophene Based Copolymer with Electron-Accepting Side Chains

  • Lenka SlusnaEmail author
  • Ludovit Haizer
  • Eduard Jane
  • Dmitrij Bondarev
  • Vojtech Szocs
  • Milan Drzik
  • Eva Noskovicova
  • Dusan Lorenc
  • Dusan Velic
ORIGINAL ARTICLE
  • 82 Downloads

Abstract

A novel copolymer poly(thiophene-2,5-diyl-2,5-di-n-octyloxycarbonyl-1,4-phenylene), denoted as P33, is introduced as potential material for photovoltaics, polymer light-emitting diodes, and/or organic transistors. P33 dissolved in chloroform is investigated by steady-state absorption, linear/non-linear fluorescence spectroscopies and time-resolved fluorescence spectroscopy. Molar extinction coefficient, fluorescence quantum yield, and singlet fluorescence lifetime of P33 are determined to be 18,315 M−1 cm−1, 0.4, and 810 ps, respectively. The P33 fluorescence fast components of decay times are 1.2 ps, 2.0 ps, and 0.5 ps for increasing wavelengths of 480 nm, 500 nm, and 520 nm, respectively. The fast component is attributed to a transport of nearly instantaneously formed excitons to localized states known as downhill energy transfer. Additionally multi-photon excited fluorescence is observed for pumping with wavelengths of 800 nm and 1200 nm. Two-photon absorption cross-section is determined to be 6.9 GM. These spectroscopic studies provide basic fluorescence characteristics of the novel thiophene copolymer P33.

Keywords

Polythiophene Photovoltaics Quantum yield Time-resolved fluorescence Two-photon absorption cross section 

Notes

Funding

This work was supported by VEGA 1/0400/16.

Supplementary material

10895_2018_2295_MOESM1_ESM.doc (294 kb)
ESM 1 (DOC 294 kb)

References

  1. 1.
    Kordt P (2016) Charge dynamics in organic semiconductors: from chemical structures to devices. Walter de Gruyter GmbH & Co KG, BerlinGoogle Scholar
  2. 2.
    Ahn SK, Nam J, Zhu J, Lee E, Kilbey SM (2018) Solution self-assembly of poly (3-hexylthiophene)-poly (lactide) brush copolymers: impact of side chain arrangement. Polym Chem 9:3279–3286CrossRefGoogle Scholar
  3. 3.
    Cunningham PD, Hayden LM (2008) Carrier dynamics resulting from above and below gap excitation of P3HT and P3HT/PCBM investigated by optical-pump terahertz-probe spectroscopy. J Phys Chem C 112(21):7928–7935CrossRefGoogle Scholar
  4. 4.
    Jung JW, Jo JW, Jung EH, Jo WH (2016) Recent progress in high efficiency polymer solar cells by rational design and energy level tuning of low bandgap copolymers with various electron-withdrawing units. Org Electron 31:149–170CrossRefGoogle Scholar
  5. 5.
    Brazovskii SA, Kirova NN, Matveenko SI (1984) The Peierls effect in conducting polymers. Zh Eksp Teor Fiz 86:743–757Google Scholar
  6. 6.
    Dang MT, Hirsch L, Wantz G (2011) P3HT: PCBM, best seller in polymer photovoltaic research. Adv Mater 23(31):3597–3602CrossRefGoogle Scholar
  7. 7.
    Etxebarria I, Ajuria J, Pacios R (2015) Solution-processable polymeric solar cells: a review on materials, strategies and cell architectures to overcome 10%. Org Electron 19:34–60CrossRefGoogle Scholar
  8. 8.
    Borchert H (2010) Elementary processes and limiting factors in hybrid polymer/nanoparticle solar cells. Energy Environ Sci 3(11):1682–1694CrossRefGoogle Scholar
  9. 9.
    Prasad PN, Williams DJ (1991) Introduction to nonlinear optical effects in molecules and polymers. John Wiley & Sons Inc.Google Scholar
  10. 10.
    Noskovicova E, Lorenc D, Magdolen P, Sigmundova I, Zahradnik P, Velic D (2018) Broadband two-photon absorption cross sections of benzothiazole derivatives and benzobisthiazolium salts. Chem Phys Lett 700:22–26CrossRefGoogle Scholar
  11. 11.
    Cohanoschi I, Echeverría L, Hernandez FE (2006) Three-photon absorption measurements in hematoporphyrin IX:“ground-breaking opportunities in deep photodynamic therapy”. Chem Phys Lett 419(1–3):33–36CrossRefGoogle Scholar
  12. 12.
    Cohanoschi I, Belfield KD, Toro C, Yao S, Hernández FE (2006) The impact of the π-electron conjugation length on the three-photon absorption cross section of fluorene derivatives. J Chem Phys 124(19):194707CrossRefGoogle Scholar
  13. 13.
    Cohanoschi I, García M, Toro C, Belfield KD, Hernández FE (2006) Three-photon absorption of a new series of halogenated fluorene derivatives. Chem Phys Lett 430(1–3):133–138CrossRefGoogle Scholar
  14. 14.
    Cohanoschi I, Belfield KD, Hernández FE (2005) Three-photon absorption enhancement in symmetrical charge transfer pull–pull fluorene derivatives. Chem Phys Lett 406(4–6):462–466CrossRefGoogle Scholar
  15. 15.
    Hernández FE, Belfield KD, Cohanoschi I (2004) Three-photon absorption enhancement in a symmetrical charge transfer fluorene derivative. Chem Phys Lett 391(1–3):22–26CrossRefGoogle Scholar
  16. 16.
    Cohanoschi I, Barbot A, Belfield KD, Yao S, Hernandez FE (2005) Mega three-photon absorption cross-section enhancement in pseudoisocyanine J-aggregates. J Chem Phys 123:231104CrossRefGoogle Scholar
  17. 17.
    Linton JR, Frank CW, Rughooputh SDDV (1989) Fluorescence studies of poly (3-hexylthiophene) solutions. Synth Met 28(1–2):393–398CrossRefGoogle Scholar
  18. 18.
    Yu W, Zhou J, Bragg AE (2012) Exciton conformational dynamics of poly (3-hexylthiophene)(P3HT) in solution from time-resolved resonant-Raman spectroscopy. J Phys Chem Lett 3(10):1321–1328CrossRefGoogle Scholar
  19. 19.
    Trotzky S, Hoyer T, Tuszynski W, Lienau C, Parisi J (2009) Femtosecond up-conversion technique for probing the charge transfer in a P3HT: PCBM blend via photoluminescence quenching. J Phys D 42(5):055105CrossRefGoogle Scholar
  20. 20.
    Xie Y, Li Y, Xiao L, Qiao Q, Dhakal R, Zhang Z, Yan X (2010) Femtosecond time-resolved fluorescence study of P3HT/PCBM blend films. J Phys Chem C 114(34):14590–14600CrossRefGoogle Scholar
  21. 21.
    Lukovskaya EV, Kosmacheva AA, Fedorova OA, Bobyleva AA, Dolganov AV, Fedorov YV, Anisimov AV (2014) Synthesis of chromophoric crown-containing styryl derivative of terthiophene and its complexation with octane-1, 8-diaminium diperchlorate. Russ J Org Chem 50(4):552–558CrossRefGoogle Scholar
  22. 22.
    Lamba JJ, Tour JM (1994) Imine-bridged planar poly (p-phenylene) derivatives for maximization of extended. π-conjugation. The common intermediate approach. J Am Chem Soc 116(26):11723–11736CrossRefGoogle Scholar
  23. 23.
    Würth C, Grabolle M, Pauli J, Spieles M, Resch-Genger U (2013) Relative and absolute determination of fluorescence quantum yields of transparent samples. Nat Protoc 8(8):1535–1550CrossRefGoogle Scholar
  24. 24.
    Cook S, Furube A, Katoh R (2008) Analysis of the excited states of regioregular polythiophene P3HT. Energy Environ Sci 1(2):294–299CrossRefGoogle Scholar
  25. 25.
    van Stokkum IH, Larsen DS, van Grondelle R (2004) Global and target analysis of time-resolved spectra. Biochim Biophys Acta 1657(2–3):82–104CrossRefGoogle Scholar
  26. 26.
    Xu C, Webb WW (1996) Measurement of two-photon excitation cross sections of molecular fluorophores with data from 690 to 1050 nm. J Opt Soc Am B 13:481–491CrossRefGoogle Scholar
  27. 27.
    Sai-Sai C, Chao G, Shu-Feng W, Qi-Huang G (2011) Ultrafast dynamics of Polythiophene with phenyl Vinylene branches studied by femtosecond fluorescence spectroscopy in solution. Chin Phys Lett 28:117802CrossRefGoogle Scholar
  28. 28.
    Jespersen KG, Beenken WJ, Zaushitsyn Y, Yartsev A, Andersson M, Pullerits T, Sundström V (2004) The electronic states of polyfluorene copolymers with alternating donor-acceptor units. J Chem Phys 121(24):12613–12617CrossRefGoogle Scholar
  29. 29.
    Cook S, Furube A, Katoh R (2008) Analysis of the excited states of regioregular polythiophene P3HT. Energ Envion Sci 1:294CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Faculty of Natural Sciences, Department of Physical and Theoretical ChemistryComenius UniversityBratislava 4Slovakia
  2. 2.International Laser CentreBratislava 4Slovakia
  3. 3.Institute of ChemistrySlovak Academy of SciencesBratislavaSlovakia
  4. 4.Polymer InstituteSlovak Academy of SciencesBratislava 45Slovakia

Personalised recommendations